
 
 
 
 

 

 

THE ECONOMICS OF OPEN SOURCE SOFTWARE 
A Model for Total Cost Analysis 

 
 
 

Richard Lloyd Barnes 
B.S., California State University, Sacramento, 2000 

 
 
 
 
 

PROJECT 
 
 
 
 

Submitted in partial satisfaction of 
the requirements for the degree of 

 
 
 
 

MASTER OF SCIENCE 
 
 

in 
 
 

BUSINESS ADMINISTRATION 
(MANAGEMENT INFORMATION SCIENCE) 

 
 
 

at 
 
 
 

CALIFORNIA STATE UNIVERSITY, SACRAMENTO 
 
 

SPRING 
2004 



 
 

 

ii 

 
THE ECONOMICS OF OPEN SOURCE SOFTWARE 

A Model for Total Cost Analysis 
 
 

A Project 
 

By 
 

Richard Lloyd Barnes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by: 
 
 
___________________________________________, Committee Chair 
Sylnovie Merchant, PhD 

Date:__________________________ 



 
 

 

iii 

 
 
 
 
 
 
Student: Richard Lloyd Barnes 
 
 
I certify that this student has met the requirements for format contained in the University 

format manual, and that this Project is suitable for shelving in the Library and credit is to 

be awarded for the Project. 

 
 
 
 
 
 
 
 
_____________________________________________ __________________ 
Chiang Wang, PhD, Graduate Programs Office Director Date 

College of Business Administration 



 
 

 

iv 

 

 

Abstract 

of 

THE ECONOMICS OF OPEN SOURCE SOFTWARE 

A Model for Total Cost Analysis 

By 

Richard Lloyd Barnes 

 

 

 

 
Software licensing fees are a major cost for enterprise Information Technology 

(IT) departments.  Faced with restricted funding, a developing economy or simply the 

need to generate more profit, both private and governmental organizations are looking to 

substitute sources of computer systems and services.  This paper is a researched 

discussion of a “free” alternative solution, Free/Open Source Software (F/OSS), and the 

costs and benefits that make it a practical choice as a replacement for existing software 

systems.  An assessment of the culture that produces, maintains and promotes this free 

software, which is fundamental to the evolution of a new development model, is also 

included.  The objective of this F/OSS study, and the final portion of the paper, is the 

presentation of an IT cost analysis model, which can evaluate the total cost of ownership 

(TCO) of up to three alternative systems simultaneously.  The spreadsheet-based model, 



 
 

 

v 

developed by the author, is a hybrid of published analytical models and accepted capital 

budgeting methodologies, which are examined within this study.  The model presents a 

structured framework for acquiring cost figures and calculates ten financial metrics from 

the assembled data.  This paper concludes with instructions for using the model and 

recommendations for further consideration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
___________________________________________, Committee Chair 
Sylnovie Merchant, PhD 

Date:__________________________ 

 



 
 

 

vi 

Table of Contents 
 
 
 Page
 
List of Figures ............................................................................................................. ix 

List of Tables............................................................................................................... x 

Software Specifications............................................................................................... xi 

 
Chapter 

 
Introduction ................................................................................................................. 1 

Background ................................................................................................................. 2 

Categories of Software Licenses........................................................................ 12 

Free Software – The GNU and GP Licenses ..................................................... 14 

Open Source Software – The OSD .................................................................... 16 

Proprietary Software .......................................................................................... 19 

GNU/Linux............................................................................................................. 21 

Open Source Software Development ..................................................................... 23 

The Open Development Model .............................................................................. 24 

Participant Motivation ....................................................................................... 27 

Open Source Business Models ............................................................................... 32 

Open Source Viability ............................................................................................ 40 

Performance ....................................................................................................... 42 

Scalability........................................................................................................... 43 

Security .............................................................................................................. 45 



 
 

 

vii 

Reliability........................................................................................................... 49 

Support ............................................................................................................... 50 

Market Share as a Measure ................................................................................ 53 

Open Source SWOT Analysis ................................................................................ 54 

Problem Description.................................................................................................... 61 

Modeling IT Capital Investments................................................................................ 65 

Hard versus Soft Costs ........................................................................................... 69 

Methods of Analysis............................................................................................... 75 

The Total Cost Model.................................................................................................. 82 

How the Model Works ........................................................................................... 84 

Acquiring the Data ............................................................................................. 86 

Navigating through the Model ........................................................................... 88 

Entering Data into the Model............................................................................. 89 

Viewing the Results of the Analysis .................................................................. 92 

Preferences ......................................................................................................... 100 

Resetting the Model ........................................................................................... 103 

Conclusion................................................................................................................... 105 

Appendix A - The GNU General Public License........................................................ 112 

Appendix B - The Open Source Definition................................................................. 118 

Appendix C - Linus Introduces Linux......................................................................... 121 

Appendix D - Examples of Free/Open Source Software ............................................ 123 

Appendix E - SCO Group letter to IBM...................................................................... 126 



 
 

 

viii 

Appendix F - Homogenous SWOT model of Free/Open Source Software ................ 128 

Appendix G - Excel Workbook Formulas used in the Total Cost Model ................... 129 

Appendix H - Visual Basic for Applications programming examples........................ 132 

References ................................................................................................................... 138 



 
 

 

ix 

 
List of Figures 

 
 Page
 
Figure 1- Market Share for servers across all domains ............................................... 9 

Figure 2 - Reasons to join an Open Source community.............................................. 33 

Figure 3 - Most important benefits of Open Source community participation ........... 34 

Figure 1 - Motivational difference between paid and volunteer developers............... 35 

Figure 2 - Linux user server software ratings by Operating System........................... 41 

Figure 6 - The relationships between the Inputs and Outputs of a financial model.... 68 

Figure 7 - Concepts and Instructions worksheet ......................................................... 86 

Figure 8 – The Total Cost Model’s menu and command button design. .................... 89 

Figure 9 - Common Data worksheet ........................................................................... 94 

Figure 10 - Alternative System Costs worksheet (3 year analysis period) ................. 96 

Figure 11 - Cost Analysis worksheet .......................................................................... 98 

Figure 12 - Graphical Analysis worksheet (display reduced to 35) ............................ 100 

Figure 13 - Preferences / Workbook options dialog box............................................. 101 

Figure 14 - Reset the model data dialog box............................................................... 104 



 
 

 

x 

 
List of Tables 

 
 Page
 
Table 1 - Top Server Developers:  NetCraft Web Server Survey May 2004.............. 10 

Table 2 - Simple Comparison of “free” Software Licenses (after DiBona, 1999)...... 19 

Table 3 - Examples of Proprietary Software ............................................................... 20 

Table 4 - Attributes of the Open Source Software Lifecycle ...................................... 26 

Table 5 - Cost Element Taxonomy for Open Source Software.............................. 72 

Table 6 - Project Cost Matrix – identifying expenses attributable to a project........... 75 

Table 7 - Description of the worksheets within the Total Cost Model. ...................... 82 

Table 8 - Data requirements for the metrics as calculated by the Total Cost Model .. 88 

Table 9 - Input data requirements by worksheet ......................................................... 92 

 



 
 
 

 

xi 

Software Specifications 

 

The Excel spreadsheet, Cost_Model.xls, which is the object of this project should 

be run under the PC version of Microsoft Excel 2000 or later.  It may work fine under 

Excel 97, but has never been tested on any version older than 2000.  According to 

Microsoft, the minimum requirements for running Excel 2000 are: 

 

Computer: IBM Compatible PC. 

Processor: Pentium (or compatible) processor, 75 MHz or faster (Windows 95 

and 98); Pentium (or compatible) processor, 233 MHz or faster 

(Windows 2000, Windows XP). 

Operating 

System: 

Microsoft Windows95, Windows98, Windows98 Second Edition, 

Windows Millennium Edition (Windows Me), Windows NT 4.0 

with Service Pack 6, Microsoft Windows 2000 with Service Pack 3, 

Windows XP, or later. 

Memory: 16MB RAM for Windows 9x, 32MB RAM for Windows NT 4.0, 

128MB RAM for Microsoft Windows 2000, Windows XP. 

Video: Super VGA (800 × 600) or higher-resolution monitor. 

 



 
 

1 

 

Introduction 

Oppressive licensing fees and an oligopolistic enterprise software market have led 

many organizations and governments to examine less expensive and restrictive 

alternatives to commercial or proprietary software.  Such solutions have existed for years, 

and have been utilized with great success, notably within the infrastructure of the Internet.  

This paper is a discussion of a “free” alternative solution, Open Source Software (OSS), 

and the costs and benefits that make it a practical choice to replace existing systems.  An 

assessment of the culture that produces, maintains, and promotes this free software, which 

is fundamental to the evolution of a new development model, is also included.  The 

outcome of this study is the presentation of a cost analysis model, which can evaluate the 

costs of implementing up to three alternative information systems solutions 

simultaneously.  The spreadsheet based cost model, developed by the author, is a hybrid 

of published analytical models and standard Information Technology (IT) cost analysis 

methodologies examined within this paper. 

Software licensing fees are a major cost for today’s corporate IT departments.  

Despite the ubiquity of computer systems at all levels of business, these costs have 

remained constant for years or, in many cases, increased.  A company with a lion’s share 

of any software market can demand excessively high prices for new products or the 

licensing of existing ones.  Further, the cost of support and end-user education has 

increased, as more entry-level users are required to use complex computing systems.  The 

use of OSS solutions can release funds, which then can be used to advance the true 

purpose of an IT department – supporting the computing needs of the enterprise. 



 
 

2 

 

Switching from a familiar computing system is not a trivial project for any IT 

department.  It requires the input, not only from IT professionals, but from users at all 

levels as well as corporate management.  Managers will most likely make the decision to 

change based on financial measures such as the Payback Period, the Return on Investment 

(ROI) and the Total Cost of Ownership (TCO.)  This paper will point out both the money 

costs and the productivity costs.  Though both can be expressed in financial terms, user 

resistance and compatibility problems have a more human side.  These factors along with 

end-user reeducation costs, support issues and security concerns are all addressed. 

This work is not meant to be a criticism or conviction of any specific software or 

systems provider.  It is an evaluation of the current business software market-share 

owners, their Open Source and Free software alternatives and the true costs of each.  As 

such, there are comparisons to products of the Microsoft Corporation, in view of the fact 

they own many of the enterprise and home computing software markets.  When possible 

other vendors with a smaller share of the market are mentioned for a more balanced 

discussion and an overall healthier research methodology.  However, in the end, 

Microsoft remains the benchmark and one of the more probable subjects of any IT 

department’s software TCO evaluation. 

 
Background 

As the computing and scientific disciplines that embraced it started to flourish at 

university research laboratories during the 1970’s, software program code sharing was 

seen as a normal exchange of ideas by the academics and researchers.  Actually, software 

sharing had existed for years, and it was said that hackers1 shared code like cooks shared 



 
 

3 

 

their favorite recipes.  Such practices seemed right and natural to academics and 

researchers.  Eventually these researchers graduated or moved into the private sector.  By 

the early eighties, the community of sharing known to many of the early pioneers of 

computing science had become cloaked by corporate legalities and non-disclosure 

agreements.  The sharing of source code was now a punishable offense. (Stallman[1], 

2003) (Kuwabara, 2000) 

Proprietary software became the norm as profits were realized from software 

copyrights, patents and other trade agreements.  In 1984 a programmer at the 

Massachusetts Institute of Technology (MIT) Artificial Intelligence laboratory, Richard 

Stallman (RMS, as he is known throughout the Internet), quit his position and set out to 

continue writing free software.  “Free” he meant, not as in cost, but rather the freedom he 

had years before to do what he wished with the software he used. (DiBona., 1999) 

(Stallman[1], 2003) 

Stallman commenced to create a completely free operating system (OS) with all 

its ancillary software.  His project was named the GNU2 project.  Despite some 

misgivings about the UNIX operating system, he chose it as a basis for the GNU project’s 

OS since UNIX programmers had a history of code sharing.  The free sharing of code 

would be the foundation of all GNU software.  Later the Free Software Foundation (FSF) 

was created as the principal sponsor and legal entity for the GNU project. To this day, it 

is supported only by the contributions of individuals; there are no corporate sponsors.  In 

fact, the essays of RMS read somewhat like political manifestos and speak with fear of 

corporate control of the computer industry. (Raymond, 2001) (Stallman[1], 2003) 



 
 

4 

 

Regardless of his fanaticism, Stallman has advanced the software world by being 

the driving force behind two popular applications, EMACS the “kitchen-sink” text 

editor/word processor/web browser/programming tool and the GNU C language compiler, 

simply known as GCC.  Both of these programs have been ported to numerous operating 

systems and are used by a vast number of people worldwide. (DiBona, 1999) 

(Stallman[1], 2003) 

In 1996, a computer user and self proclaimed “old hacker”, Eric Raymond, was 

looking for an e-mail client that would serve his needs.  He found one in a free software 

project that had become stagnated, and soon took over leadership of its development.  The 

code became his to direct as it evolved into the program that would serve his needs.  His 

experience working with this development project helped him to formulate theories on the 

growing Free Software movement. (Raymond, 2001) 

In several essays, Raymond, who has become an OSS evangelist, compared 

Free/Open Source development to a bazaar whereas he likened the proprietary (or closed 

source) software development environment to that of a cathedral.  He based his 

conclusions on his experience in leading the OSS project that developed the fetchmail3 

program.  His book, The Cathedral and the Bazaar: Musings on Linux and Open Source 

by an Accidental Revolutionary, is a collection of these essays and has been called both a 

bible and an anthropological analysis of the F/OSS community. (Raymond, 2001) 

(DiBona, 1999) 

Raymond noted some principles that are common to all successful Open Source or 

Free Software projects: 



 
 

5 

 

• Every good software program starts by satisfying a need of the author 

(“scratching an itch”.) 

• Great programmers know what code to reuse and what to rewrite. 

• Involve your user base as co-developers. 

• Release code updates early and often. 

• The last duty of a F/OSS project leader is to pass the management of the 

project off to a capable new leader. 

Raymond’s influential work in this area, lead him to a collaboration with Bruce 

Perens, another UNIX hacker and Free Software advocate.  Together they created the 

Open Source Initiative (OSI) and wrote the Open Source Definition (OSD) that provided, 

in their view, a less radical approach to Free Software then that of the Free Software 

Foundation.  They felt the style of Richard Stallman and the FSF was seen by many as 

counterculture, and their confrontational tactics were not business friendly.  To further 

legitimize their efforts, they acquired an OSS certification mark and standardized the 

Open Source Software name within the Open Source Definition. (Raymond, 2001) 

(DiBona, 1999) 

Raymond readily points out that the OSI agrees with the principles of the FSF, but 

the OSI was created to mainstream Free Software and make it friendlier to business 

interests.  Since the formation of the OSI, free software has become more widely 

accepted; and the GNU operating system, Linux, has come to threaten Microsoft 

Window’s market dominance. (Raymond, 1999) 

However, the incident that brought the vision of Open Source software to the 

masses was the rather uneventful release of a new UNIX-like operating system kernel in 



 
 

6 

 

1991 by a young Finnish college student.  In that year, Linus Torvalds released his hobby, 

Linux, to the Internet.  Linux took off as programmers from every corner of the Internet 

submitted code, tested and redistributed the program to new users.  Soon the kernel was a 

stable, reliable and viable OS kernel, and the GNU Project finally had its operating 

system.  The enthusiasm for Open Source software grew, as there was now a completely 

free, unencumbered GNU OS. (DiBona, 1999) 

Obviously, the work of RMS, Eric Raymond, Linus Torvalds and the other free 

software revolutionaries did not occur within a vacuum.  During the 1980’s and 90’s 

several large software companies came to dominate and drive the commercial software 

market.  IBM had been around for decades and their work in computing was the basis for 

many modern systems.  Their dominance and influence was to be expected.  However, 

two new firms emerged in the late seventies that would transform the way businesses and 

consumers used computers, Apple Computer and Microsoft Corporation.  It was in the 

face of the almost oligarchic hold these companies had along with several others, such as 

Oracle, Sun Microsystems (Sun) and Hewlett-Packard (HP) that Open Source code had to 

prosper. (Anonymous,[22], 2003) 

These dominant and proprietary software systems tended to lock users into not 

only their software with all its restrictions, but also to specific hardware and data formats.  

Such arrangements have the tendency to make switching from one system to another, 

whether it is an operating system or word processor, an expensive task.  F/OSS leads to 

open systems and open standards, which can be easily translated across platforms.  

Proprietary software also binds users to the cycle of upgrade fees.  The United States 

Federal government could save at least one billion dollars in original licensing fees by 



 
 

7 

 

switching to Open Source software.  Additionally, upgrade or maintenance fees do not 

exist with F/OSS. (McCullagh, 2002) (Wysong, 2000) (Raymond, 2001) 

In the past few years, major Information Technology vendors and enterprises have 

embraced the use of, and the concepts behind, Open Source software as an alternative to 

traditional commercial/proprietary software.  There also appears to be a strong drive from 

consumers outside of the United States for “software libre”, or free software.  Many 

municipal, state and national governments have legislated either the mandatory use of, or 

the study of using F/OSS alternatives where possible. (Festa, 2001) 

However, cost alone is not what makes F/OSS so inviting to organizations as a 

substitute for proprietary or Commercial Off the Shelf (COTS) solutions.  The manner in 

which it is developed and maintained has defined a new model for software development.  

With F/OSS there is no single company determining the software's feature set, release 

schedule, or most importantly, demanding an adequate return on its investment.  The lack 

of centralization in F/OSS development provides a much wider base of technical 

expertise, a more varied and substantiated feature set and more widespread and 

differentiated testing platforms.  In addition, the talent pool that invests time to 

collaborate on such projects as the Linux operating system is beyond the resources of any 

“closed-source” developer.  Based on its projected user base, no software company could 

possibly bear the financial burden of the 800 programmers who volunteered their talents 

to produce Eric Raymond’s Open Source program, fetchmail.  (Anonymous[7], 2000) 

(Raymond, 2001) 

Switching from proprietary computer systems such as those merchandised by Sun, 

HP and IBM to generic computer hardware running GNU/Linux can save users thousands 



 
 

8 

 

of dollars per server.  In some cases, analysts have projected long-term savings of 

millions of dollars.  However, even research originating from the same firm, International 

Data Corporation (IDC)4, differs on whether OSS has a lower TCO.  One paper published 

in 2001 under the sponsorship of Redhat5 concludes: “…open source software such as 

Linux could lower the costs associated with software…When summed up, this could 

mean a lower total cost of ownership.” Another IDC study initiated by Microsoft and 

released in 2002 offers a different conclusion:  “Our in depth study suggests that 

Microsoft Windows 2000 offers a lower total cost than a Linux solution…the cost 

advantages are significant: 11-22% over a five year period.”  Disparities arising from 

skewed or highly biased studies make it difficult for managers to assess alternative 

solutions. (Bozman, et al, 2002) (Gillen, 2001) 

Reliability and Market share are frequently used both as decision variables and as 

arguments against implementing Open Source solutions.  An article in the March 2003 

issue of eWeek magazine contained the following comments made by the CEO of a 

Virginia based IT vendor and service provider: 

“I don’t see government adopting Apache to run any major, substantive 

systems…When you are running government systems you are accountable. You 

want proven systems.” (Taft, 2003) 

 
Apparently, this CEO does not know Apache is the most widely used web server 

with over 65% of the active web sever market world wide according to the NetCraft and 

E-Soft Web Server Surveys.  Apache has been the number one web server since 1996 

when it took first place from the public domain National Center for Supercomputing 

Applications (NSCA) web server.  It continues to take market share from all other web 



 
 

9 

 

servers, commercial or otherwise (See Figure 1 and Table 1.) (NetCraft, 2003) (E-Soft, 

Inc., 2003) 

 

Apache

Microsoft

SunOne
NSCA

Other

 
 

Figure 1- Market Share for servers across all domains August 1995 – May 2004  
(source: http://news.netcraft.com/archives/2004/05/index.html) 

 

The benefits of Free or Open Source may not be just about price, but this aspect 

does very much define its allure.  However, it should be completely understood that free 

software is not simply about price.  Internet Explorer is free, and so too, are many other 

programs.  This is not the characterization of free software this paper means to discuss.  It 

is, as Richard Stallman protests, free as in Free Speech not as in free beer.  It is a matter 

of principle rather than price. (Stallman[1], 2003) 

Once the fitness to task or reliability of an OSS solution is determined, an IT 

manager can be assured of a rapid distribution of fixes whether for performance, security 



 
 

10 

 

or new features.  The development model of OSS enables the quick release of new code 

since patches can be released at any time.  Thus, a user will not have to wait for the next 

release for satisfaction…satisfaction that may come with a new version and a new license 

fee.  Further, with the ability to view and change the underlying code of an application, an 

organization's programmers can tailor it to their own needs and extend its life as needed. 

(Kenwood, 2001) 

 
Developer April  2004 Percent May  2004 Percent Change
Apache 33329879 66.99 33892817 67.05 0.06
Microsoft 10691683 21.49 10858168 21.48 -0.01
SunONE 1661229 3.34 1644412 3.25 -0.09
Zeus 763302 1.53 754014 1.49 -0.04

 
Table 1 - Top Server Developers:  NetCraft Web Server Survey May 2004   

(source: http://news.netcraft.com/archives/web_server_survey.html) 
 

Proponents of F/OSS employ several common arguments for its superiority over 

Proprietary or “Closed” source software: 

• Quality or Reliability – Because F/OSS software is developed by persons 

with different skill levels, using different equipment with different vesting 

in the success of the software, there is an examination of the code from 

diverse viewpoints.  Each participant has their own specific interest or 

stake in the project that guides their involvement.  This condition does not 

guarantee that all bugs will be eliminated, however it greatly increases the 

chances they will at least be exposed.  The number of active participants 

on many OSS projects dwarfs the number that a commercial company 

could use and still create a profitable piece of software. 



 
 

11 

 

• Speed of Fixes and Updates – One of the tenets of OSS development is 

“release early, release often”.  Patches, fixes or enhancements generally 

are released as soon as they are approved by the project leader.  This is 

counter to commercial software developers who work closely with 

marketing departments to decide when the next version should be released.  

F/OSS security patches are often released before there is a widely known 

problem. 

• Cost – Generally, there is no initial cost except the cost to download the 

software.  However, there are companies that sell F/OSS bundled with 

installation or general use support services or customized for specific 

duties.  OSS has no upgrade costs, only the ongoing maintenance support 

costs that a typical application or system might normally have. 

• Verifiability – Because users can examine the source code, organizations 

with strict security requirements can audit the software to ensure that it is 

actually doing only what it is supposed to do.  Closed source systems are 

used trusting that the developer is coding in their best interests. 

• Freedom – Open source applications tend to run on numerous computer 

platforms and generally adhere to open industry standards.  Since most 

support is offered by third parties, an organization need never be restricted 

to one vendor.  Users could switch to another support vender without 

changing the software.  F/OSS use also affords the freedom to move from 

one hardware platform to another without buying new software or 



 
 

12 

 

investing in extensive user training. (Wysong, 2000) (Raymond, 2001) 

(DiBona, 1999) 

Although many licenses exist which define the attributes of Open Source 

Software, it can generally be defined as software that has no licensing fee, is developed 

mainly by volunteers and whose source code is published and available for modification 

by an end-user.  The success of such products as the Linux operating system and the 

Apache web sever has shown OSS to be both reliable and viable. (Peeling, et al. 2001) 

 

Categories of Software Licenses 

Some of the terms used in conjunction with OSS, such open source and free do 

not describe any specific license, but are used as general descriptors of a class of software 

with two common features; no licensing fees are charged and the program's source code is 

freely available to the user.  The fact that no licensing fees are charged to use the 

application nevertheless does not prohibit any charges for distributing the software.  In 

fact, the FSF actually promotes distributing free software for a fee. (Anonymous[9], 

2002) (Stallman[2], 2003) 

There are currently over 40 software licenses approved by the OSI, each with its 

own requirements and restrictions.  However, they all adhere to the OSD; which is 

reproduced in Appendix B. (Anonymous[20], 2003) (DiBona 1999) 

For the purpose of this study, Open Source Software (OSS), or Free/Open Source 

Software (F/OSS), will be considered any software that: 

• Does not have a licensing fee. 

• Makes available its source code and allows modifications to it. 



 
 

13 

 

• Can be redistributed without restriction. 

Though it is at times rather dogmatic or rigid, the FSF uses clear distinctions in an 

area that is not always so distinct.  The following is a listing of software types as 

published by the Free Software Foundation based on the software’s license: 

• Free software is free to use, copy, alter or sell (with or without 

modifications) as long as any distribution contains the full source code to 

the program. 

• Open Source is usually, but not always, a more limited license than that of 

Free software.  Some OSS has license restrictions due to the use of 

copyrighted libraries or those placed by owner of the copyright.  Although 

it is free, or gratis, the numerous licenses for OSS have differing 

limitations and conditions. 

• Proprietary software is not free.  In contrast to Free software, you cannot 

use, distribute, or modify the software, except under the strict terms of the 

owner’s license.  Proprietary means it is owned by someone. 

• Commercial software is developed and owned by a business.  Most 

commercial software is proprietary and not actually sold but rather leased.  

You do not own the program(s); you are simply given a limited license to 

use the software.  Source code is not generally available for commercial 

software. 

• Shareware is a type of commercial software that allows a user to try a 

“crippled” or time limited version to ascertain the fitness to task of the 

program(s).  After the trial period, you are obligated to purchase the 



 
 

14 

 

software and adhere to the terms of the seller’s license.  Most shareware 

does not make the source code available to users. 

• Public domain software is not copyrighted, but the source code may not 

be available, thus it can still be “proprietary” in nature. 

• Freeware can mean almost any “free of charge” software.  It is not Free as 

in the FSF definition, as it does not usually give the user the source code or 

allow any modification to it.  However, since there is no charge for its use, 

the software can typically be redistributed without any limitations. 

(Anonymous[6], 2002) 

The minor differences of opinion concerning licensing terms and conditions 

among F/OSS advocates are continually an issue.  Note this statement posted on the 

PostgreSQL6 website: 

“People often ask why PostgreSQL is not released under the GNU General Public 

License.  The simple answer is because we like the BSD license and do not want 

to change it.  If you are keen to read more about this topic, then please take a look 

in the Archives at any of the many threads on this subject, but please don't start 

yet another debate on the subject!” (Anonymous[21], 2003) 

 

Free Software – The GNU and GP Licenses 

In 1984, Richard Stallman, who was working at MIT, started the GNU Project to 

create and develop a completely free operating system and promote free software.  The 

name GNU (pronounced “guh-NEW”) came from the hacker tradition of using recursive 

acronyms.  The term GNU means “Gnu’s Not UNIX”.  Today the GNU system is mainly 

known as Linux; however, Linux is just the core of the system.  Thousands of GNU 



 
 

15 

 

applications make up the available system and provide nearly every type of software 

application.  See Appendix D for examples of GNU software. (Anonymous[4], 2003) 

(Anonymous[9], 2002) 

Free software, Stallman believes, represents knowledge, and should be freely 

shared, thus enriching all of computer science.  Proprietary software companies, he feels, 

are actually hindering the advance of software technology by hiding behind vague 

intellectual property laws.  This idea comes from years of experience in software 

development where programmers freely traded code.  Part of the GNU philosophy is just 

that; freely available source code is necessary for the advancement of science.  It also 

embraces the idea of reusable code and eschews reinventing the wheel. (DiBona, 1999) 

(Anonymous[13], 2003) 

To promote the idea of Free software and the GNU project the Free Software 

Foundation (FSF) was formed in 1985 as a tax-exempt umbrella organization for the 

GNU project and the development and distribution of GNU and non-GNU (but still free) 

software.  Numerous GNU software programs have been written or maintained by FSF 

employees. (Stallman[1], 2003) 

The “free” of Free software is a very often misunderstood concept.  In fact, the 

Free Software Foundation's web site actually encourages people to charge for "free 

software."  This is because charging for free software does not make it less free, you still 

have the explicit license (under Gnu’s General Public License and many other licenses) to 

do what you want with the software (with various minor restrictions.)  The FSF sees the 

selling of free software as a way to finance the furthering of the product while 

maintaining its “free” status. 



 
 

16 

 

The GNU General Public License (GPL), which is the basis of the FSF licensing 

policies, provides the end user with four essential “rights”: 

• The ability to use the program for any purpose. 

• Freedom to redistribute the software for free or for a fee. 

• Access to the complete source code for the program and all future changes 

to it. 

• The right to modify any part of the source or use portions of it in other 

programs. 

The GPL gives the end user the right to distribute a modified version of the 

software, but it must be done without restricting or revoking any of the rights, which were 

originally granted.  Thus, all modifications (and hopefully improvements) are returned to 

the community for everyone's benefit.  GNU software uses a form of copyright known as 

the “copyleft” and, is not public domain software.  The idea behind the copyleft is to 

maintain the freedom of the software, not to restrict its use as with a typical intellectual 

property patent or copyright. (Anonymous[11], 2003) 

While those at the FSF say: “Free software is a matter of liberty, not price”, the 

OSI “does not have a position on whether ideas can be owned, whether patents are good 

or bad, or any of the related controversies.” (Anonymous[11], 2003) 

 

Open Source Software – The OSD 

The Open Source software movement began as a more liberal (or more 

conservative depending on your viewpoint) approach to software licensing.  It was 

spawned as the result of Netscape’s plan to give out the source code for its browser 



 
 

17 

 

software.  Netscape asked Eric Raymond to consult on the release of their code to the 

public because of his writings and work in the name of Free software.  He and some of his 

colleagues knew this would be an excellent opportunity to present the virtues of Open 

Source software and offer a new license paradigm. (DiBona 1999) 

The founders of the Open Source movement were concerned with Richard 

Stallman’s' radical, and at times socio-political, ideas concerning software freedom.  His 

beliefs were suited to many hackers and other counterculture types, but Raymond was 

especially concerned that they would not be so inviting to conservative business people.  

He believed a new license was desirable. (DiBona 1999) (Raymond 2001) 

The Debian Linux distribution had been created to supply a completely Free 

GNU/Linux software collection.  Most of the software they included was as free as the 

FSF required, but some used licenses other than the GPL.  Because of this, the Debian 

developers wrote the Debian Free Software Guidelines to direct the selection of software 

for inclusion in their compilation.  It was a document that essentially defined what was to 

be considered Free software and what would be non-free.  In early 1998, the Debian Free 

Software Guidelines became the basis for the Open Source Definition. (DiBona, 1999) 

Bruce Perens, the author of the Open Source Definition (OSD) calls it is a bill of 

rights for computer users.  It defines what a software license must grant you to be 

classified as Open Source software.  It is a description rather than a license and provides 

guidelines for the over 40 licenses currently approved by OSI.  The Open Source 

Initiative was formed in 1998 as a public benefit corporation (not-for-profit) to manage 

the new Open Source certification mark and to promote Open Source ideals. (DiBona, 

1999) (Anonymous[9], 2002) 



 
 

18 

 

Regardless of the specific license, OSD compliancy guarantees: 

• The right to copy and distribute copies of the program. 

• Access to the program’s source code 

• The right to make improvements to the source code 

These may seem similar to the rights bestowed by the GPL as they are seeking the 

same ideal.  However, the OSD embraces many licenses that are not palatable to the Free 

Software advocates.  It gives more latitude to the owners of the code, but never preempts 

the previous three rights.  They are the unalienable rights of Open Source Software.  

Table 2 offers a comparison of several free software licenses. (DiBona, 1999) 

 



 
 

19 

 

Proprietary Software 

Essentially this class of software is “owned” by someone.  Although there may be 

no charge for using it, as with Microsoft's Internet Explorer, it is not “free”.  True, it is 

free of cost, but the user does not have any access to the program’s source code.  What 

makes software truly proprietary is that you are restricted from doing anything with it 

except by agreement with the “owner”.  The owners of proprietary software consider their 

code to be trade secrets, meaning that they have actually copyrighted programming 

algorithms.  Table 3 illustrates examples of proprietary software. (Anonymous[6], 2002) 

 

License 

Can be mixed 
with non-free 

software 

Modifications can 
be taken private 

and not returned to 
you 

Can be re-
licensed by 

anyone 

Contains special 
rights or 

privileges for the 
original 

copyright holder 
over your 

modifications 

GPL     
LGPL √    
BSD √ √   
X Window √ √ √  
NPL √ √  √ 
MPL √ √   
Public Domain √ √ √  

 
Table 2 - Simple Comparison of “free” Software Licenses (after DiBona, 1999) 

 

The traditional method of selling COTS or proprietary software is actually the 

issuance of a license to use the software.  The user purchases the right to use the software 

much as you would purchase a book.  As with a book, you have a physical copy of the 



 
 

20 

 

book and can read it as you like, you may not take it apart and use its pieces as you wish.  

This is basically the same as with software; like written works, the code and the 

underlying techniques (algorithms) are considered intellectual properties (see Appendix 

E.)  These ownership rights give the holder a direct value and a ROI for the software, 

which is the intent of most business enterprises. (Hecker, 2000) 

 
Category Software Developer / Vendor 
Operating Systems Windows Microsoft Corporation 
 Solaris Sun Microsystems 
 OS/2 IBM 
 Palm OS PalmSource Corporation 
Productivity Microsoft Office Microsoft Corporation 
 Lotus SmartSuite Lotus / IBM 
Network Lotus Notes Lotus / IBM 
 Netware Novell Corporation 
Database Oracle Oracle Corporation 
 SQL Server Microsoft Corporation 
Internet Internet Explorer Microsoft Corporation 
 WS_FTP Ipswitch Corporation 

 
Table 3 - Examples of Proprietary Software 

 

Commercial software can be open source and yet not proprietary, so it is 

important to maintain a differentiation at this point.  For Example, the MySQL database 

software is open source and owned by MySQL, AB.  It can be used without any licensing 

fee under the GPL or under a commercial license that allows for less restricted use by the 

customer.  In other words, you can use the database software free under the GPL as long 

as you do not violate its terms.  However, distributing the MySQL database with a non-

free application violates the GPL and you would need to license the database software 

under the commercial license.  In the case of MySQL, this is an important distinction as 



 
 

21 

 

databases are regularly used by front-end applications and other programs that do not 

qualify under the GPL. (Anonymous[17], 2003) 

 

GNU/Linux 

As previously mentioned the GNU Project was formed to produce a complete, and 

absolutely free, operating system.  This not only meant the applications to run under the 

system but also the OS kernel.  The proposed GNU system was named the HURD (as in a 

herd of gnus) and was to consist of servers or processes that ran on top of the Mach 

microkernel.  This kernel, which was developed at Carnegie-Mellon University, has 

become the foundation for several operating systems including Apple Computer's new 

OS/X operating system for Macintosh computers. (DiBona, 1999) (Norton and Story, 

2000) 

However, by 1991, the HURD was still not ready for use and was thought to be 

years away from a stable release.  The GNU project, on the other hand, already had many 

applications which, when bundled with an OS, would make a completely free system.  

The GNU library of applications included a C language compiler, which could be used to 

create or port7 additional software to run under a GNU OS. (DiBona, 1999) 

A solution was introduced on August 25, 1991.  On that date a Finnish 

undergraduate Computer Science student at the University of Helsinki named Linus 

Torvalds posted an interesting message on the Minix8 user newsgroup: 



 
 

22 

 

“Hello everybody out there using minix - 

I'm doing a (free) operating system (just a hobby, won't be big and professional 

like gnu) for 386(486) AT clones. This has been brewing since april, and is 

starting to get ready.” 

 
See Appendix C for the complete text of several of Linus' early newsgroup posts. 

(Hasan, 2002) 

Linus had been using Minix, which is a UNIX-clone OS developed as a teaching 

tool and used by many students as a UNIX alternative.  However, it was not free.  He 

chose the name Linux for his new OS as a combination of Linus and Minix.  However, by 

the time Linus posted his first historic message in 1991, Linux contained no code 

borrowed from Minix; it was new and unique.  In the Fall of that same year, Linus, with 

the help of many volunteers from the Internet, had created a kernel that could run BASH 

(the Bourne Again shell) and the GNU C language compiler, GCC.  This made it usable 

and provided the foundation for a UNIX compatible OS that was truly free and open 

source.  Linux was adopted as the GNU operating kernel and officially became known as 

GNU/Linux. (DiBona, 1999) 

Today Linux is still just an OS kernel.  What many people think of as “Linux” is a 

combination of this kernel and the GNU applications that run under and provide services 

through it.  Still more people think of Linux as the set of applications bundled together 

and merchandised by companies such as RedHat, SuSE9, MandrakeSoft10, and many 

others.  While these compilations do contain the Linux operating system and GNU 

software, they are not Linux, but rather Linux distributions (or distros.)  Although most 

companies sell their distros, they customarily follow the tradition of Linus' original 



 
 

23 

 

release; always free for the download.  However, since many distributions actually 

contain some commercial, proprietary and other non-free software the download versions 

of these distributions are not as complete as the retail versions. (Anonymous[16], 2003) 

There are distros that provide complete web servers, development platforms or 

basic desktop systems.  Linux runs handheld computers, gaming consoles and is the OS 

used by the TiVo television recording/replay devices.  Linux powered computers helped 

create the graphics used by Pixar Studios for its movies Monsters, Inc. and Toy Story; and 

brought the Tolkien classic, The Lord of the Rings, to life on film.  Linux has gained the 

attention and sponsorship of such companies as IBM, HP, Sun and Oracle.  It is big 

business and provides profits to many companies, but it is still free.  This is the paradox 

of free software. (Greene, 2003) (Anonymous[16], 2003) 

 

Open Source Software Development 

"If builders built houses the way programmers built programs, the first 

woodpecker to come along would destroy civilization." - Gerald P. Weinberg 

(Anonymous[19], 2003) 

 
Cooper Stevenson suggests that Open Source development or, the Open 

development model, is similar to the standardization of the IBM Personal Computers 

(PCs) of the early 1980’s.  The publishing of PC standards by IBM allowed for fierce 

competition, which drove innovations while the cost to consumers decreased 

dramatically.  Such competition, he reasoned, forces vendors to continually improve their 

product or lose any market share they owned.  This notion alone, outside of any true 



 
 

24 

 

economic effect or profit, would be a substantial benefit to the Industry as a whole. 

(Stevenson, 2003) 

The Open Development Model 

Open Source development is simply another software development methodology, 

not a new technology.  There are two major concepts which make OSS development a 

distinctly new software methodology.  Both are intertwined to a point that they tend to 

drive each other.  The first is the type of license an OSS project uses, and the other is the 

structure of the project’s development.  The specific license will dictate how the project is 

managed, to what degree volunteer help is used and lastly how and when the project’s 

product is released and distributed. (DiBona, 1999) (Stoltz, 1999) 

Open Source development is a distributed model of development, though the true 

framework depends on the licensing of the software.  As stated earlier, there are over 40 

OSS licenses compliant with the OSD.  While each offers users basic rights similar to 

those given under the GPL, the control of the development or the future of the code can 

be different.  Each OSS project has an owner, who either actually owns a copyright 

against the project, or is simply a leader who manages the software’s evolution.  These 

individuals or entities guide the project by making decisions about the development of the 

code and the direction of its evolution.  Some owners that are commercial entities have 

staff programmers working on OSS projects alongside the customary volunteers. 

(DiBona, 1999) (Raymond, 2001) 

Many have the impression that Open Source development is merely the creation 

of free software by volunteers sharing code and ideas via the Internet.  While this concept 

is somewhat true, the process has evolved and has become more complex.  Although 



 
 

25 

 

every project is customized to achieve specific goals, there are characteristics common to 

most F/OSS projects: 

• Peer review 

• Prompt and continual feedback 

• Skilled and motivated developers 

• User involvement in all aspects of the project 

• Rapid release of new or improved code versions 

• Parallel development and debugging (developers working separately on 

the same code)  (Schweik, 2003) (Peeling, 2001) 

As shown in Table 4, the lifecycle of a F/OSS project involves many more 

workgroup organizational and policy definition tasks than the average in-house or 

commercial project.  Proprietary “cathedral” type projects do need organization, but they 

have the advantage of previously created policies, which can easily be reused.  One of the 

major decisions affecting the future policy decisions of a project is the selection of the 

license that will govern the software.  The ultimate demise of a F/OSS project, as shown 

in Table 4, is when there is no longer any interested party to take over the project lead.  

However, GPL projects may be revived at a later date if someone wishes to take the helm. 

(Schweik, 2003) 

Raymond uses the metaphor of a cathedral and a bazaar to point out the 

differences between F/OSS and closed source (or proprietary) software development.  

The cathedral is a model of centralized planning and activities with highly structured 

schedules, guidelines and procedures.  In Cathedral development, the programmers 

produce their code in the quiet solitude of secrecy.  The software development follows in 



 
 

26 

 

a cohesive manner, a set of prioritized guidelines for features and functions and all work 

is closely coordinated to achieve specific goals.  Closed source, proprietary software is 

the product of cathedral development. (Lancashire, 2001) (Raymond, 2001) 

 
OSS Lifecycle Attributes 
Stage 1: Initiation 

• Individual initiator or small group (e.g., 2-4 people)  
• Highly skilled development team  
• Modular design  
• The kernel with some promise  
• Virtual team may grow in size as progress is made (e.g., "trusted lieutenants") 

Stage 2: Going "Open" 
• Open source license  
• Credibility of the initial kernel and participant base  
• Communication systems  
• Version control systems  
• Initial governance structures and institutional design established  

o Operational rules  
o Collective-choice rules  
o Constitutional-choice rules 

Stage 3: Project Growth, Stability or Decline 
• Recruitment strategies  
• Size of community with a "personal itch" for the product  
• Project growth:  

o "OS network" — regional coordinators, communities of users expands  
o Real success — expands to "OS Enterprise"  

 Large network of developers/users  
 Core staff  
 Magazines, sponsors, organizational infrastructure  
 e.g., Linux, Apache, PHP 

• Project stability:  
o Participation remains stable over time 

• Project decline/death:  
o Loss of participant interest 

 
Table 4 - Attributes of the Open Source Software Lifecycle 

(Source: Schweik, 2003) 
 

The bazaar, on the other hand, is loud and noisy with everyone trying to get 

attention at the same time.  There is no apparent hierarchy and the participants come and 



 
 

27 

 

go as they please.  Anyone can participate.  It appears to be unstructured, chaotic and on 

no one's time schedule.  Because it is so chaotic not everyone is heard or even recognized, 

however it does act as a community, much like a neighborhood marketplace.  Bazaar style 

development demands that updates or patches are applied immediately and released 

quickly in order to find more flaws or add new features. (Kuwabara, 2000) (Lancashire, 

2001) 

The bazaar concept suggests that all bugs are shallow and can be exposed quickly 

due to the many eyes that are set on the code.  In the Open Source development model the 

individual who originally finds a bug may not be the same person who understands it and 

ultimately fixes it.  Discovering it is the bigger challenge, although in Open development 

they both occur quickly.  “Given enough eyeballs, all bugs are shallow” has been called 

Linus’ law.  Proof that it is a valid precept is the Linux kernel itself.  With its complexity 

and such a large base of developers, Linux is relatively bug free. (Raymond, 2001) 

Brook’s Law, suggests that the complexity and communication costs of a 

development project increase with the square of the number of developers, and has been 

considered by many in the software industry to be gospel.  Yet if this were completely 

true large and complex projects, like the development of Linux, would be impossible.  

Therefore, with the bazaar style of development it seems that as long as it can be managed 

by the leader or the core group of developers the more participants the better. (Bezroukov, 

1999) (Anonymous[19], 2003) 

Participant Motivation 

A major criticism of F/OSS development involves the motivation of the project 

participants.  This concern along with criticism of the skill or experience of contributors 



 
 

28 

 

leads many arguments in favor of traditional development models.  However, the F/OSS 

movement attracts some of the brightest minds in Computer Science.  Very often, these 

hackers have day jobs and still find time to participate in the drudgery of programming, 

and to act as advocates for the cause.  Studies have been undertaken to determine the 

experience or quality of participants.  The quantitative results of one such research study 

suggest the typical F/OSS project member is 30 years old and has over 11 years of 

programming experience. (Wheeler, 2003) 

Another significant argument in opposition to F/OSS is that no one is obligated to 

a project.  At any time, it is argued, a project leader or any of the core developers could 

leave.  Moreover, if that person is a strong personality their departure could stall, or 

worse, end the active development of the project.  However, there appears to be a strong 

peer acceptance or ego drive among F/OSS coders.  It seems more plausible that once 

involved in any project as a core developer or owner, the more committed that individual 

becomes.  In such a case, the thought of leaving the project one has fostered for so long 

might trigger a fear that development may falter, further binding them to it. (Bezroukov, 

1999) 

Figures 2, 3 and 4 display the results of surveys with OSS project participants in 

the areas of personal and job related motivations and the benefits of their participation in 

the projects.  According to these studies, the primary incentive to join a project and the 

primary benefit expected both relate to increased development skills and knowledge of 

the subject (Figures 2 & 3.)  However, the motivations differed based on whether a 

participant was paid or not.  Volunteers were more inclined to work on a project if it 

provided intellectual stimulation or improved their skill set.  Paid participants were 



 
 

29 

 

motivated by the work related functionality, or simply, the ability to perform their job 

better (Figure 4.) (Kim, 2003) 

Participants in a F/OSS project must have trust in the leader or core group of the 

project.  This is important as not every enhancement or offering from the contributors will 

be used in a sanctioned release.  This confidence in the leader’s judgment makes peer 

recognition more valuable as it comes from a respected source.  Trust also prevents 

persons from becoming disgruntled and taking the project in another direction.  This 

occurrence, known as “forking”, is a splitting of a program’s development into diverging 

paths, usually resulting in two separate programs.  It is considered one of the more 

hazardous problems in F/OSS development and has been called intellectual mutiny. 

(Nuvolari, 2001) (Schweik, 2003) 

Motivational surveys of the of developers who participate in F/OSS projects seem 

to make it clear that altruism or a need to share the wealth is not a primary incentive.  

This is not to say their choice of project has nothing to do with charity, but there seem to 

be other inducements: 

• A majority of hackers who work on F/OSS projects do so to enhance their 

jobs as system administrators, webmasters, or other IT professionals. 

• Many companies have assigned in-house programmers to work on F/OSS 

projects as a part of there business strategy.  Sun employees, for instance, 

work on the OpenOffice.org code base, which is used in Sun’s StarOffice 

commercial product. 

• Student and professional academics write a great deal of F/OSS.  Much of 

it is used in research and has a narrow use, but some is contributed as 



 
 

30 

 

F/OSS.  Mosaic, the forerunner of the Netscape web browser, was written 

over the Christmas break by University of Illinois student Marc 

Andreessen.  Participating in a F/OSS project offers Computer Science 

students professional experience in software development. 

• Another motivation, and the most important as Eric Raymond sees it, is 

joining or initiating a project because you need or want the application.  

All Linus Tovalds wanted was a free UNIX-like operating system he could 

use at home. (Miller, 2003) 

Open Source project participation has been shifting from mostly a volunteer 

venture to include more commercially supported paid membership.  Volunteerism is still 

the mainstay of Open Development, but more enterprises are seeing the benefit of 

working to improve the software on which they depend.  The myth of the isolated hacker 

writing code for F/OSS projects has proven to be just that.  The majority of people who 

work on these projects do so to enhance their jobs or improve their skills (Figures 2 and 

3.)  Many Linux programmers who contribute code work for companies like IBM, HP, 

Intel and Advanced Microdevices (AMD.)  This investment in F/OSS projects adds value 

to the sponsors own products and their use of Linux.  The Apache web server, for 

example, has gained from the expertise of the many web administrators who benefit from 

the stable, reliable and low-cost system.  In both of these cases, the programmers also 

benefit by acquiring an in-depth knowledge of the software, which in turn is a competitive 

advantage to their employers (Figure 4.) (Wheeler, 2003) (Miller, 2003) 

Companies that “Open Source” their software should notice an increased speed 

with which their code evolves.  When Netscape released its source code to the public, it 



 
 

31 

 

was immediately showered with fixes and enhancements from the Internet.  This added 

base of developers comes at a very small cost.  Volunteers in a F/OSS project have their 

own computing equipment, software and network connection.  There is literally no direct 

cost for these additional employees.  Moreover, the pool of talent may include hackers so 

experienced or educated that they could not or would not be added to the average 

development project.  This lowered overhead allows smaller organizations to enter a 

market to compete against a much larger company with a dominant product. (DiBona, 

1999) (Anonymous[14], 2003) (Anonymous[19], 2003) (Lerner, 2000) 

Linus Torvalds has written that Linux has succeeded because it is based on good 

design and a good development model.  From his first messages (Appendix D) it can be 

seen he is professing the Open Development model. (DiBona,1999) 

 



 
 

32 

 

Open Source Business Models 

Consumption is the sole end and purpose of all production; and the interest of the 

producer ought to be attended to, only so far as it may be necessary for promoting 

that of the consumer. 

The Wealth of Nations (Anonymous[25], 2003) 

 
It is a basic tenet of economics that all things being equal consumers will buy the 

product with the lowest cost.  One of the problems with this idea as it applies to computer 

software is that considering all software equal certainly relegates it to the status of a 

commodity.  Since feature sets and implementations do vary it is hard to see the truth of 

this idea, yet software is becoming commoditized.  Under these circumstances, could 

anyone suggest the consumer pay a higher price because it is best for market owners such 

as Microsoft or Oracle?  In a capitalistic system the laws of economics will prevail and, 

developers that cannot compete will have either to lower their prices, provide greater 

value or leave the market. (Prasad, 2001) 

Money saved by software consumers from lowered licensing fees will be spent 

elsewhere, so the lack of a price for F/OSS does not spell the end of capitalism.  In fact, 

the funds may be used to purchase other IT products, such as hardware, on which to run 

the software.  Such a simple change in spending behavior illustrates one strategy that 

businesses can utilize to make money with F/OSS. (Prasad, 2001) 

 



 
 

33 

 

 

Participate in a new form of cooperation

Improve my job opportunities

Get a reputation in the Open Source community

Improve Open Source products of other developers

Learn and develop new skills

Participate in Open Source scene

Distribute non-marketable software products

Get help in realizing a good idea for a software product

Solve a problem that could not be solved  by proprietary software

I do not know

Make money

Limit the power of large software companies

Think that software should not be a proprietary good

Share knowledge and skills

 

 

Figure 2 - Reasons to join an Open Source community (Source: Kim, 2003) 



 
 

34 

 

 

 

Increased personal knowledge base

Improved reputation in the professional arena

Job promotion(s) in current job

New job offer(s)

Personal sense of accomplishment for contribution

Other

Paid consulting opportunities

Personal sense of  connection with the SourceForge community

Improved reputation in the SourceForge community

Stock options

Cash rewards for work done
 

 
 

Figure 3 - Most important benefits of Open Source community participation (Source: Kim, 2003)



 
 

35 

 

 

Intellectually stimulating

Non-work functionality

Obligation from use

Work functionality

Improves skill

Code should be open

Work with team

Open Source reputation

Beat proprietary software

Professional status

 
 
 

Figure 1 - Motivational difference between paid and volunteer developers (Source: Kim, 2003)



 
 

36 

 

Much of the income from the sale of software to a large enterprise is based on the 

service and support fees that can be integrated into a complete solution contract.  Many 

organizations prefer to buy software as a complete solution rather than purchasing mere 

licenses.  This is not to say that every product requires ongoing support, in fact many 

COTS package can be licensed and loosed upon employees without any issues.  However, 

larger, more complex systems such as servers and database applications require 

sophisticated installation, tuning and maintenance services. (Anonymous[9], 2002) 

Enterprise buyers look to ISVs (independent software vendors) and VARs (value 

added resellers) to provide this additional support.  These channel partners add an indirect 

value to the software desired by corporate customers.  The consideration of a software 

solution by any enterprise will often hinge on the strength of this added value.  

(Anonymous[9], 2002) 

The OSD virtually prohibits any effort to capture the direct sale value from any 

covered software. Though it is still possible, it is not as easy to do.  However, there are 

five principle and proven ways for commercial enterprises to extract an indirect value 

from F/OSS.  Each of these business models has worked, through both the IT boom of the 

nineties and the lean markets of today. (Raymond, 2001) (Anonymous[19], 2003) 

The five business models are: 

1. Support Sellers – In this model, a business relies on the aftermarket needs of its 

customers.  The F/OSS is given away, but the distribution media is sold along 

with service and support.  Value is added to the software by commercial name 

backing (branding), end-user support and consulting services.  This model is 

known to the F/OSS community as the “Give Away the Recipe, Open a 



 
 

37 

 

Restaurant” approach.  Both RedHat and SuSE Linux distributors have used this 

model successfully for several years. 

2. Loss Leader / Market Positioner – This model dictates that you give away the 

F/OSS (possibly at a loss) in an effort to position your own commercial software 

within a given market.  This strategy was used by Netscape to ensure that 

Microsoft could not fully monopolize the web browser market.  Sun uses the same 

tactic with its commercial version of the OSS office suite OpenOffice.org.  

OpenOffice.org is a fully OSD compliant office suite under its own license and is 

a substitute for the market owner, Microsoft Office.  The Sun version, StarOffice, 

includes several proprietary modules that enhance the office suite (like the 

grammar and spellcheckers, and a commercial database application) and is sold as 

a COTS product.  Both applications are derived from the same code base. 

3. Widget Frosting – Using this approach, a company gives away F/OSS as a way 

to add value to its own product, usually hardware.  By leveraging the F/OSS 

development community the company saves money on software development and 

acquires better support by having users determine what drivers and other 

accessories are desirable for their product.  For example, a company that sells 

servers might sell a web server preinstalled with Apache or an e-mail server using 

Sendmail.  These applications are included at a minimal or no cost, and could 

easily save the end-user hours of work.  The simple bundling of the software with 

their product adds value to the hardware.  The F/OSS community also wins with 

this model by acquiring more hardware support for their software, something that 

once was rare. 



 
 

38 

 

4. Accessorizing – The easiest to understand strategy is the one in which a business 

sells F/OSS companion products such as hardware, computer systems, F/OSS CD 

compilations and, of course, books.  Popular F/OSS accessories also include the 

obligatory coffee mugs, T-Shirts and other hacker trinkets.  The most successful 

and widely known user of this model is O'Reilly Associates11.  They have 

extended their product line to cover not only printed F/OSS materials, but also 

developer conferences, online library subscriptions and other educational venues. 

(Anonymous[19], 2003) 

5. Free the Future, Sale the Present – A vendor using this model releases the 

source code of a program (along with precompiled binaries) to the public as would 

any OSD compliant developer.  However, the license, which permits redistribution 

and customization of the source code, prohibits any commercial use without a 

license fee.  The license further guarantees that the software will become truly free 

at a later date, or should the original owner of the license go out of business.  The 

use of the term original owner is important since this prevents the inheritance and 

thus the continued closure of the program.  This model essentially guarantees the 

software will become open sourced some time in the future, and this ensures its 

continued existence. 

Companies who use F/OSS to market their own products can expect benefits that 

will put them in a competitive advantage against businesses who remain traditional IT 

vendors.  The main benefit and, probably the most important of all, is intimacy with the 

customer.  Being close to the end-user provides the advantage of immediate feedback 

from the market.  The F/OSS community is not a trivial group.  Requests for new 



 
 

39 

 

hardware or software support or for new technologies can rapidly be incorporated into the 

project, as customers are often development team members. (Anonymous[19], 2003) 

Another often-overlooked benefit is the broader market achieved through the 

porting of an application to different system platforms.  It is common in the F/OSS 

development community for projects to have ports to various operating systems submitted 

by team members.  Some of these versions have such a small user base that having in-

house developers do the porting would be a losing financial proposition.  However, the 

porting from one OS to another, no matter how small a market, exposes the software to 

more customers. (Anonymous[19], 2003) (Raymond, 2001) 

A company planning to enter a software market that already has a dominant 

proprietary application has a much better chance of succeeding as a F/OSS product.  For 

example, the reuse of existing code by a new F/OSS product dramatically reduces the 

time to market of that new product.  This and the lower cost of the development team, 

produce an extreme competitive advantage for the newcomer.  Competing as another 

proprietary product would increase the costs of entering the market and thus put a greater 

burden on a new product with unknown capabilities.  Such new competition will help the 

software industry as a whole produce better and less expensive software. (Daffara, 2000) 

(Stevenson, 2003) 

Finally, F/OSS business models do not suffer from the same financial problems as 

the proprietary models.  As mentioned previously F/OSS can easily muster numbers of 

programmers and testers that could never be rationalized by any commercial software 

company.  To the disbelief of many, these large teams of developers can develop systems 

of any scale.  For example, the source for RedHat Linux version 7.1 included over 30 



 
 

40 

 

million lines of code.  This number is estimated to represent 8,000 person years or an 

investment of over one billion dollars.  The resources needed to keep a F/OSS project 

going is never limited to the “bottom-line”.  There is no marketing department scheduling 

release dates based on the corporation’s need for income at given points in time. 

(Wheeler, 2003) 

 

Open Source Viability 

In today’s mature software market, traditional life-cycle cost models cannot be 

reliably used for pre-purchase decision-making.  Indirect costs, which are harder to 

measure, are a more critical component of software selection.  Establishing these costs is 

likely to involve a consideration of such performance values as scalability, reliability, 

manageability, and other operational and functional variables.  Performance variables 

used in evaluating systems should always be corroborated and obtained from unbiased 

sources. (Kenwood, 2001) (Wheeler, 2003) 

With F/OSS, end-users are not at the mercy of a developer’s “vision” which might 

lead them away from their own corporate needs.  The threat of a vendor leaving the 

market, abandoning a product or ending support for a product is virtually eliminated with 

F/OSS.  The independence from the vendor of the software might be the greatest 

argument for the viability of F/OSS. (Anonymous[28], 2003) 

An IDC survey of current Linux users from March 2000 compared it to Windows 

NT and UNIX (considered for the study as a single OS.)  The results show Linux rated 

higher than Windows NT within the areas of performance, availability, quality, security, 

management and scalability.  Windows NT was rated higher where the reputation of 



 
 

41 

 

Microsoft and its extensive user base were major factors namely, branding, reputation, 

application choice, and ease of use.  Although UNIX received higher scores than Linux in 

several categories, the fact that the Open Source OS beat a popular proprietary competitor 

speaks to its own growing reputation.  The data collected is plotted on the graph in Figure 

5.  (Kenwood, 2001) 

 

 
Figure 2 - Linux user server software ratings by Operating System (US respondents) 

(Source: Kenwood, 2001) 
 

One of the strongest cases for the practicality, utility and viability of F/OSS comes 

from Microsoft’s own internal documents.  In October 1998, a confidential and internal 

memorandum was leaked that noted the threat of OSS to Microsoft’s own software.  It 

includes the following opinion, as written by Microsoft employee Vinod Valloppillil: 

"OSS poses a direct, short-term revenue and platform threat to Microsoft... 

Additionally, the intrinsic parallelism and free idea exchange in OSS has benefits 



 
 

42 

 

that are not replicable with our current licensing model and therefore present a 

long term developer mindshare threat.” (Stoltz, 1999) 

The document containing this quote became known as the Halloween Document 

due to the date of its release.  Other internal Microsoft documents subsequently leaked 

over the last few years carry on a discussion of the same subject.  They continue to state 

the threat of and superiority of F/OSS. (Nuvolari, 2001) (Anonymous[24], 2003) 

Performance 

The performance of computer software means its ability to use a system’s 

resources in an efficient manner while performing its programmed tasks.  These resources 

include the processor, memory and disk sub systems.  Performance of this type is easy to 

measure and statistically evaluate.  Efficient use of system resources means little, 

however, if the software is not performing its particular tasks punctually, accurately and 

economically.  Thus, good performance can be judged a blend of both good software 

design and the implementation of that design. (Kenwood, 2001) 

As discussed earlier, many project contributors are commercial users who have a 

stake in the performance and reliability of the software.  It is in their best interest to 

produce efficient processes and algorithms, which in the end provide a well performing 

system.  It cannot realistically be argued that they would be so careless as to spend time 

producing an application that runs less efficiently than COTS. (Raymond, 2001) (Miller; 

2003) 

Not only do the participants of a F/OSS project desire a better performing 

application; end-users also want compliance to standards, efficiency and reliability.  To 

this end, the Linux project has continually received enhancements from paid 



 
 

43 

 

programmers working for companies such as IBM, HP, Computer Associates, Intel and 

AMD.  Both AMD and Intel, for example, contributed to ensure the quality of 64 bit and 

multiprocessor central processing unit (CPU) support services for Linux, which ensures 

the ability to use their products on Linux based computers.  This type of cooperative 

involvement has become a commercial necessity for many firms. (Miller; 2003) 

A further indicator of the performance superiority of F/OSS over its proprietary 

counterparts, though not scientific in the least, is market share.  In several major software 

categories, F/OSS either dominates or owns a significant and growing share.  Although 

market share and end-user participation in F/OSS development cannot guarantee a high 

level of performance, it can be construed by taking these facts together that some superior 

performance qualities do exist. (Wheeler, 2003) 

 

Scalability 

The scalability of software, and particularly of an operating system, refers to its 

adaptability to growing demands.  This term is also used to refer to the ability of systems 

(or software) to be used on multiple platforms of various sizes, or on systems that use 

multiple processors.  Regardless of the usage, the basic concept of software scaling is its 

adaptability to growth. (Wheeler, 2003) 

The most commonly discussed applications with regards to scalability are 

database management systems (DBMS) and operating systems.  GNU applications, 

because of their design, can and have been ported to systems of all sizes from 

wristwatches to supercomputers.  The advantage of F/OSS is that the source code is 

available to any programmer, scientist or technician who wants to optimize it for their 



 
 

44 

 

respective system.  With a proprietary application users must wait for a system port to 

become economically feasible, and then must wait through the development cycle as the 

system is adapted.  Some systems are so unique that no software vendor would be willing 

to expend the resources necessary to produce a reliable port. (Wheeler, 2003) 

(Anonymous[13], 2003) 

A recent benchmark test by eWEEK Labs/PC Labs rated the Open Source DBMS, 

MySQL, a close second to Oracle corporation’s Oracle 9i.  The rating was given with the 

mention that “Oracle9i and MySQL had the best performance and scalability…” This 

successful outcome came while facing such competition as Microsoft’s SQL Server 2000, 

IBM’s DB2 and Sybase’s Adaptive Server Enterprise.  The testers also noted that only 

Oracle 9i and MySQL were able to run the 8-hour stability test without any issues.  The 

other DBMS systems required workarounds to complete the same test.  All of MySQL’s 

competitors in this study have well known credentials and are not marginal products; they 

also come with costly licensing fees. (Wheeler, 2003) (Dyck, 2002) 

Because the source code is freely available F/OSS can be tailored to most any 

specific need or system.  F/OSS projects use open standards and programming languages 

that are highly portable.  It is within the reach of virtually any organization to have an 

application customized from F/OSS.  Examples of this flexibility can be seen in the large 

number of disparate systems that use F/OSS. (Anonymous[13], 2003) (Raymond, 2001) 

GNU/Linux is used on such diverse platforms as: 

• Personal Digital Assistants (PDAs) 

• Minicomputers 

• Mainframes 



 
 

45 

 

• Massive Computing Clusters (over 100 CPUs) 

• Supercomputer implementations 

• Cellular telephones 

• Television recorders and playback appliances 

• Portable MP3 players 

• Game consoles 

• Network Appliances 

• and, even a wrist watch created by IBM  (Wheeler, 2003) 

Many vendor initiated comparisons have been made between Linux and 

Microsoft’s Windows products.  In most of these cases, the resulting statistics favor the 

sponsor of the research.  However, one undeniable advantage of the Linux OS is its 

ability to run on older hardware.  Linux can run on i486 (and older) PCs, which makes it 

especially economical as hardware lifetimes can be drastically lengthened.  Such 

backward compatibility even surpasses all variants of UNIX systems.  This example of 

scalability points to the flexibility of the system, which exists by design. (Peeling, 2001) 

Linux is not the only highly scalable free operating system.  NetBSD12 is another 

free UNIX-like OS that has been ported to run on over 50 platforms.  When it comes to 

F/OSS scaling, the main obstacle is the motivation and creativity of the user. (Wheeler, 

2003) (Anonymous[13], 2003) 

 

Security 

The assumption that software whose source code remains hidden from the public 

is more secure than OSS is provably false.  This idea most probably stems from the belief 



 
 

46 

 

that if you lock something up it is less likely to be stolen.  Closed code, some suggest, 

hampers intruders and limits the extent of a security breach or the resulting damage.  The 

truth is, a malicious hacker does not need access to the actual source code to attack a 

system.  This is continually proven as Microsoft’s proprietary systems are regularly and 

almost routinely exploited.  A hacker can decompile a proprietary program to reveal a 

close facsimile of the source which can then be examined; or they could simply run tests 

and observe the behavior of the application to guess how the underlying algorithms and 

processes work. (Raymond, 2001) (Whitlock, 2001) (Wheeler, 2003) 

Source code that is closed to everyone but the owner lacks a vital component of 

software security – verifiability.  With closed source software, security flaws or potential 

breaches are usually made known only after an incident.  In addition, only the owner can 

fix security issues and customers must take their word that the problem was fixed, or 

worse did not create another vulnerability. (Raymond, 2001) (Whitlock, 2001) 

Typically, by the time a security problem is found within a proprietary 

application, it has been breached at least once.  In fact, exploitation of the vulnerability is 

most often the method of discovery.  By the time the owner or developer is notified of the 

problem it can be assumed that it has been exploited more than once, and that this will 

continue until a fix is released.  Unfortunately, continued breaches can almost be assured 

by the publication of a security warning.  The period between the discovery of a problem 

and the release of a fix is one concern; another is the often substantial time between the 

release of a fix and its application by end-users.  Some users may never acquire the patch, 

or apply it. (Viega, 1999) 



 
 

47 

 

In 2001 after the Code Red worm cost enterprises over one billion dollars, the 

Gartner Group13, issued a recommendation that enterprises using Microsoft’s Internet 

Information Server (IIS) switch to Apache or iPlanet servers.  The fact that IIS systems 

were attacked 1400 times more frequently in 2001 than were Apache servers may have 

prompted this warning.  Security flaws were discovered so frequently with IIS that 

patches were issued weekly.  The security of the Apache server lies in its use of a 

fundamental rule of server administration, that of “least privileges”.  Rarely is one group 

or person given complete administration (admin) rights over an Apache system, and 

server processes always run with the least possible privileges.  This protocol is prevalent 

throughout most of F/OSS where it applies, and is one of the reasons very few viruses 

thrive on UNIX and Linux systems. (Wheeler, 2003) 

The matter of software viruses, trojans and other malicious programs has become 

a major security concern of IT managers.  Anti-virus software is a billion dollar annual 

market, and losses from virus related incidents cost millions annually.  There are over 

60,000 viruses known to infect Windows machines.  Less than 100 affect Macintosh, 

commercial UNIX variants and GNU/Linux systems combined.  The prevalence of 

viruses on Windows may simply be because there are more of these systems in use, which 

allows for an easier spread of infection.  On the other hand, it could be the design of the 

Windows products that allows untrusted scripts, macros or system processes to execute 

with more system privileges then required  However, many argue that the authors of 

viruses have a grudge against Microsoft and are obsessed with ending its tyrannical reign, 

but this theory does not explain why Windows systems are so easily breached and 

damaged.  The lack of effective protection of system files and folders, and the application 



 
 

48 

 

of root14 (or administrator) privileges are probably the most evident flaws.  These are 

common security precautions in Unixes and Linux.  Their absence in the Windows OS 

amounts to a flaw in its basic design which suggests poor security planning. (Wheeler, 

2003) (Peeling, 2001) 

Another source of security problems is the intentional work of the developers 

themselves.  Software companies have been known to insert “backdoors” into their 

products which allow users with the correct password or other credentials to gain access 

to the system at the root or administrator level.  These access points can be used by 

legitimate personnel in the performance of their duties, but could also be used by anyone 

with the right knowledge or skill.  In one such instance, Borland International had a 

backdoor in their InterBase product for over 6 years.  Since no outsiders could review the 

code, it was untouched until Borland released InterBase as an Open Source project.  The 

problem was discovered a few months later and fixed within a month.  Microsoft had a 

similar backdoor placed in its FrontPage Web Server which remained hidden for over 4 

years.  Closed code hid these vulnerabilities from users.  The possibility of such a 

dangerous piece of code existing in F/OSS is unthinkable, since it would most likely be 

discovered before the code was assimilated into a release version by the core group or 

leader.  Additionally, inserting such detrimental code into a F/OSS project could ruin the 

reputation of that participant.  Considering ego and peer acceptance are major factors in 

project participation, such issues seem unlikely. (Whitlock, 2001) 

Other developer issues exist, consider the simple transmission of confidential data 

by an application.  Flawed protocols or faulty transport agents could expose data at any 

phase of transmission and allow persons other than the specified receiver to access the 



 
 

49 

 

information.  Closed code does not allow a user to determine if their transmission 

includes only the data they wish to send, or if the algorithms employed are defective in 

any way.  Any breach, developer instituted or otherwise, is extremely significant when it 

applies to governmental use of software systems with their inherent confidentiality issues. 

(Festa, 2001) 

Good programmers know that certain programming library calls are inherently 

insecure and should always be avoided in specific instances.  The peer review method 

ensures such problems can be seen by the more advanced programmers and brought to the 

attention of the less experienced ones.  Thus, problems are fixed and young hackers are 

trained to code more securely.  The peer review process of F/OSS development promotes 

efficient, error free and secure code simply by the threat that others might discover your 

mistake.  Code submissions are more carefully made under this threat of exposure.  The 

“many eyeballs” concept ensures more varied scrutiny of the source code than can be 

found in a commercial project. (Viega, 1999) (Raymond, 2001) (Whitlock, 2001) 

 

Reliability 

As with some of the other software characteristics previously discussed, the term 

reliability can be interpreted to define slightly different software qualities.  Both robust 

and dependable are synonyms for reliable, but this concept also includes code which is 

secure, free of defects and suitable to its designated task. (Anonymous[13], 2003) 

When competing against proprietary software in reliability studies, F/OSS has 

shown considerable benefits in many circumstances.  The results of a 2000 Swiss study of 

websites showed that Microsoft’s IIS had twice the downtime of Apache served sites.  



 
 

50 

 

The research covering a 3-month period studied over 100 popular websites.  Extrapolation 

of this data over a longer period shows a greater divide.  Another study compared two 

Linux distributions with Windows NT Server 4.0 over a 10-month period, running 

identical hardware with identical processes and services running.  During the test period, 

the NT server crashed an average of every six weeks, and required about 30 minutes of 

work to return it to service after each crash. However, neither Linux server ever went 

down during the same period.  This lead the researchers to the conclusion that Linux is 

more stable than Windows NT, at least within the environment of their test. (Wheeler, 

2003) 

Many such studies and surveys can be called to testify to the reliability, stability 

or robust nature of F/OSS, but the best evidence comes from the Internet itself.  The 

infrastructure of the Internet is heavily dependent on F/OSS.  Programs like Linux, 

MySQL, Apache, SendMail and bind, and scripting languages like Perl and PHP handle a 

major share of Internet traffic.  The explosive growth of the Internet in the last 10 years 

speaks to the immense reliability, scalability and flexibility of the F/OSS used as its core 

system software. (Anonymous[19], 2003) 

 

Support 

Software support is the assistance given to users that enables them to utilize the 

software to perform “as advertised”.  Technical assistance is often needed to install, 

maintain or operate software, and is usually offered as part of the cost of the product’s 

license.  Such support is traditionally accessed through telephone hotlines, e-mail, 

newsgroups, online user forums and, in certain instances, direct on-site service.  Some 



 
 

51 

 

proprietary software companies employ third party vendors to provide the technical 

support for their products.  Other firms, unrelated to the developer, often provide separate 

support access for end-users and IT professionals, as well. (Anonymous[9], 2002) 

(Wheeler, 2003) 

Opponents of F/OSS claim that the developers or project owners lack the ability to 

support their applications sufficiently.  The belief that F/OSS support is inferior to that 

offered by proprietary software companies infers that these companies offer good support.  

However, many proprietary software companies offer only initial installation support with 

the purchase of a license.  Typically, to continue receiving support after that brief initial 

period an end-user must purchase a support contract.  Paid contract support is also an 

option with most many F/OSS products. (Bezroukov, 1999) (Anonymous[13], 2003) 

F/OSS offers two main types of support, paid assistance and free online user 

community venues such as newsgroups.  Each kind provides the same level of support as 

would be expected of a proprietary vendor.  However, since support staffed by volunteers 

may not always provide timely or even adequate answers, purchasing F/OSS from a 

vendor that offers support is a better alternative for those requiring such services.  

Providing technical support to users is one of the more successful business opportunities 

that F/OSS offers entrepreneurs, and it can be reasonably assumed that an independent 

service and support vendor would provide an adequate response to its customers needs, 

since its revenue depends on continued patronage.  (Wheeler, 2003) (Anonymous[9], 

2002) 

End-user support has a lifecycle based on economics, and companies eventually 

end support for products that are no longer revenue producers.  F/OSS support vendors, 



 
 

52 

 

however, can offer support as long as there is a market for their services.  Customer 

demand drives the continued support of F/OSS, not corporate revenue streams. 

(Kenwood, 2001) 

Another F/OSS support fallacy concerns project participant’s willingness to spend 

time documenting the software and writing user manuals.  Some suggest that this 

drudgery is not the work for which hackers join a project.  Lakhani and von Hippel, 

however, found that F/OSS participants perform the mundane and less glamorous tasks 

such as technical documentation writing and the development of help systems and 

Graphical User Interfaces (GUI) for the same reason programmers write code.  This 

motivation extends to providing support through active participation in newsgroups and 

other online user to user assistance venues. (Bonaccorsi, 2002) 

In 1997 InfoWorld awarded its Best Technical Support Award to the Linux user 

community as a whole.  The award web page gave one of the best cases for the support 

offered by the F/OSS community.  The commentary offered a satirical analogy of a 

customer calling Microsoft technical support, and ironically points out the differences 

between the support offered by a vendor of proprietary software and the support that can 

be had through F/OSS channels: 

“…imagine, if you will, that the Microsoft staffer on the line directs you to a Web 

page where you can download free of charge the latest release of SQL Server and 

a free copy of C++ in order to solve your problem, and then follows this up a 

week later by e-mailing you a program that was written in his/her spare time that 

extends your program in some new way ...” (Foster, 1997) 

 



 
 

53 

 

The point of this story is that this sort of assistance is shared daily among F/OSS 

users, though it seems unfathomable to relate to Microsoft.  Though it may seem to take 

more effort, F/OSS users can structure their own preferred style of support, be it e-mail, 

Internet Relay Chat (IRC), newsgroups, or third party books or manuals.  The driving 

force behind F/OSS, the Internet and online collaboration, gives this support its vitality, .  

and F/OSS support is virtually open 24 hours a day, 7 days a week.  All that is needed to 

access support which often is superior to proprietary software company’s options, is a 

connection to the internet.  But with systems as reliable and well performing as Linux, 

Apache and MySQL and the many other F/OSS programs in wide use throughout the 

world, technical support becomes less important. (Wheeler, 2003) (Foster, 1997) 

(Kenwood, 2001) (Anonymous[13], 2003) 

 

Market Share as a Measure 

It is a common belief that the owner of a specific software market is the superior 

product within that group.  If this premise is true then many F/OSS applications are both 

mainstream and superior products.  F/OSS owns several major software markets, and does 

so with an almost complete dominance. (Wheeler, 2003) (Anonymous[9], 2002) 

Recent surveys of software markets have shown: 

• Apache was the #1 web server with a market share of 59.91 percent. 

• Sendmail was the most widely used e-mail server (a 42 percent market 

share). 

• bind was used by most Domain Name Servers on the Internet (a 95 percent 

market share). 



 
 

54 

 

• PHP was the number one server-side web scripting language (a 24 percent 

market share). 

• OpenSSH, an implementation of the SSH security protocol, had a 66.8 

percent market share.  The proprietary version, SSH, had a market share of 

only 28.1 percent. 

• GNU/Linux had a of 28.5 percent share of all servers on the Internet, 

making it number one. 

(Wheeler, 2003) 

Gnu/Linux has become such a market force that established UNIX vendors, such 

as IBM, HP and Sun have started promoting it.  IBM has gone so far as porting Linux to 

run on its AS390 mainframe computers, and naming it the successor to its own brand of 

UNIX, AIX.  A recent study by Forrester Research15 surveyed 2500 IT managers about 

their understanding and use of OSS.  The results of the research revealed that 56 percent 

currently use OSS and 6 percent more plan on using it within two years.  Recognition by 

such high-level vendors and IT decision makers will fuel the momentum that will only 

grow the market share of F/OSS. (Wheeler, 2003) (Whitlock, 2001) 

 

Open Source SWOT Analysis 

A SWOT (strengths, weaknesses, opportunities, threats) analysis is a strategic tool 

for auditing a business and defining its stature within its market or environment.  It is a 

first stage planning technique that assists business analysts in cataloging issues that 

influence the organization.  The following SWOT analysis has been created from 

previously discussed material and specifically with information from the sources noted at 



 
 

55 

 

the end of the listing.  The analysis provides a brief inventory of how F/OSS holds up 

against the IT world as a whole.  This assessment tool, as it is applied here to F/OSS, is 

both subjective and general due to product variations.  In other words, this SWOT 

analysis will be valid for the entire range of F/OSS and may not be an fully accurate 

analysis of any specific application. 

The point here is not to present an in depth analysis of F/OSS as it stands in its 

current environment, but to inventory issues within the four SWOT categories for 

consideration in the discussion of F/OSS as a whole.  The opportunities and threats are 

issues that exist from F/OSS’s external environment including, but not limited to 

customers, competitors, suppliers, distributors, barriers to entry, and substitutes.  

Classifying these attributes inherently leads to some general opinions and conclusions 

regarding the future of F/OSS.  A list of some general conclusions appear at the end of 

this section. 

The F/OSS SWOT analysis listing follows. (a Traditional SWOT diagram / model 

is shown in Appendix F.) 

Strengths: 

• Inexpensive or free software – no license fee. 

• F/OSS is freely distributable, no legal penalty for making copies. 

• No license management costs or license related legal risks. 

• Less dependence on a specific product or vendor. 

• Increased competition within software markets reduce costs and increase 

quality. 



 
 

56 

 

• Improved security, as source code can be verified and certified by outside 

sources. 

• Open standards and formats simplify transactions and reduce data storage 

incompatibilities. 

• Modular, customizable software, users choose modules and customize to 

suit needs. 

• Evolving software, user supported and user driven. 

• Rapid release rate; fixes, patches and new versions released often. 

• Parallel debugging/development (“Many Eyes”). 

• Software often performs better then commercial competition. (e.g. Linux, 

Apache) 

• 24 x 7 technical support via the Internet (e.g. newsgroups, mailing lists, 

online forums and message boards). 

• Availability of the source code, gives users assurance that the disinterest of 

a vendor, or their complete exit from the market will not effect the 

software’s availability or viability. 

• Users do not have to wait for bug fixes on a vendor’s schedule.  Fixes and 

new features can be produced by end-users and released to the public at 

will. 

• Users are not bound to the strategic decisions made by a vendor. 

• Because OSS vendors compete against one another to provide support, the 

quality of support increases while the end-user cost of support decreases. 

• Immense programming expertise garnered by Internet connectivity. 



 
 

57 

 

• Large distribution base – Free Internet download sites and independent 

vendors. 

• Corporate support for development, distribution and consultancy services 

(e.g. IBM, HP, Sun, Oracle). 

• Code re-use reduces development time and provides predictable results. 



 
 

58 

 

Weaknesses: 

• Potential need for extensive migration to replace proprietary systems. 

• May require (new) in-house development and maintenance skills within 

the enterprise. 

• Product selection could be difficult (limited marketing). 

• Possible interoperability problems with proprietary software formats or 

standards. 

• No brand name assurance. 

• Resistance among decision makers, IT personnel and end-users (fear of 

change). 

• F/OSS licenses do not permit ownership. 

• More highly educated or skilled administrators needed to maintain F/OSS. 

• No GUI or weak GUIs are the norm as many F/OSS programmers prefer 

command line interfaces. 

• Most F/OSS faces the risk of code forking, which ultimately produces 

different versions of the same product and thus demands a decision on 

which “fork” to accept.  

Opportunities: 

• Easy entry into software markets with an existing dominant product or 

vendor. 

• “Going Open” gives vendors the ability to dramatically increase the 

developer base of existing closed source programs. 



 
 

59 

 

• Closed source software released to the F/OSS community gains not only 

developer support, but that of end-users and independent vendors. 

• Governments require sizeable software installations on limited budgets. 

• Providing software systems to Third World and other cash poor 

governments, school systems and non-profit agencies. 

Threats: 

• Disinterest in a specific F/OSS project could stall or end active 

development. 

• Release of new F/OSS can appropriate current project participants and stall 

or end active development. 

• Customized F/OSS programs can fragment or fork the existing project and 

undermine its evolution. 

• Hybrid open-source projects that build on true F/OSS and are released as 

commercial ventures. 

• Organized FUD (Fear, Uncertainty and Doubt) marketing campaigns by 

commercial software companies. 

• Lawsuits involving  intellectual properties (e.g., SCO versus IBM16; see 

Appendix E) or software patents.  Legal actions in this area could set 

precedents which adversely affect the entire F/OSS community. 

• Governmental or enterprise security requirements (or certification) that is 

rejected by the F/OSS community. 



 
 

60 

 

• Version control amongst integrated or compatible programs cannot always 

be assured as with COTS.  (Varghese, 2003) (Kenwood, 2001) 

(Anonymous[28], 2003) 

A review of the F/OSS SWOT analysis as presented in previous listing and 

Appendix F presents the following general conclusions: 

1- Third party accessory and F/OSS distribution vendors can thrive by providing 

added value to “free” products. 

2- Opportunities exist to promote and implement modern computing technology 

using F/OSS in Third World, public sector and non-profit agencies (e.g., schools, 

governmental agencies, hospitals, etc.); entities that otherwise could not afford the 

products. 

3- Intellectual property rights, software patents and licensing problems will continue 

to threaten F/OSS as proprietary vendors and developers slowly resign to the 

needs and will of the market.  Infringement issues are easily uncovered and 

resolved with Open Source software. 

4- Opportunities for new and innovative software products will grow as the barriers 

to entry are lowered. 

5- In a F/OSS centric market, computing standards will be driven more by users, and 

not controlled or imposed by a monopoly. 

6- Most legal threats to F/OSS will be mitigated as it becomes mainstream and is 

more widely accepted as a viable and economically feasible IT solution and 

business model. 



 
 

61 

 

7- Service and support vendors, and IT consulting will become a vibrant and growing 

market sector, possibly over taking commercial development in monetary volume. 

 

Problem Description 

The discussion to this point has been concerned with the nature and benefits of 

Free and Open Source Software (F/OSS) as compared to its closed source or proprietary 

equivalents.  It has been, admittedly, an argument championing the former.  This 

prejudice was intended to elevate F/OSS to a status equal with COTS or other closed 

source software.  The idea of equivalency is a major element of this research, as it would 

be worthless to provide a cost analysis between disparate solutions.  Now, the focus will 

shift to the financial view of such comparisons; the quantitative analysis of alternatives.  

The decision to implement or migrate to a new software infrastructure is a capital 

investment; and as with any well-planned investment, benefit and risk analyses should be 

performed to determine the feasibility and profitability of the proposition. (Helfert, 1994) 

In order to make realistic and economically sound decisions regarding a 

company’s future IT expenditures, business executives need accurate data on which to 

base their conclusions.  In addition, it is often necessary to justify proposals to non-IT 

decision-makers by using familiar business metrics that remove technical jargon and 

reveal the bottom-line.  A recent study reports that eighty percent of the companies 

surveyed use some form of business or financial analysis prior to implementing new IT 

related projects.  Many of the instruments are common analytical models and 

methodologies familiar to any student of business.  These tools, which embrace a wide 

range of business case methodologies, include Return on Investment (ROI), Cost Benefit 



 
 

62 

 

Analysis (CBA), Net Present Value (NPV), Internal Rate of Return (IRR), and Total Cost 

of Ownership (TCO) analyses. (Schmidt[3], 2003) (Meals, 2002) (Kenwood, 2001) 

An analysis that provides decision makers with appropriate and accurate data 

should include an evaluation of all costs, both direct and indirect, and all benefits, 

obstacles, risks and scenarios as discovered within the proposed project’s life cycle.  A 

valid study should also assess whether the proposal fits the organization’s established 

business strategy and define any deviation from its objectives or policies.  While many 

analytical methods exist that produce such narratives and financial metrics, they do not all 

give a comprehensive or accurate picture of the subject.  A Business Case Analysis 

(BCA) provides the background, assumptions, risk factors and other internal and external 

environmental assessments that are part of a sound, fact-based study. (Schmidt[3], 2003) 

(Helfert, 1994) (Meals, 2002) 

A BCA attempts to predict the results of a specific business decision.  However, 

many business case analyses fail due to vague definition and incomplete or limited 

scrutiny.  Just as external variables affect the outcome of a sound BCA so, too, do internal 

factors such as the type of organization being evaluated.  A non-profit or governmental 

agency, for example, has a different focus and different needs than a profit-making 

corporation.  Such differentiations also extend to a public company versus a privately 

held one.  Any activity that affects the project belongs in a case study.  (Anonymous[3], 

2003) (Schmidt[3], 2003) (Meals, 2002) 

Financial metrics, such as the ROI, NPV and IRR, which are valuable as 

justification tools, provide the quantitative or fiscal components of a BCA.  Depending on 



 
 

63 

 

the audience of the study, or the type of organization it describes, the decision to accept 

the proposal may rest with one or more of these resultant metrics: 

• Net Cash Flow (Full valued, Incremental or discounted) 

• Net Present Value (NPV) of the forecasted Cash Flow 

• Internal Rate of Return (IRR) 

• Return on Investment (ROI) 

• Payback period of the expenditure 

• Total Cost analyses; e.g., Total Cost of Ownership (TCO), Total Capital 

Costs (TCC), Total Operating Expenses (TCE) 

• Cost by a specific event or entity; e.g., Cost per transaction, per person, per 

seat, etc. 

(Anonymous[3]; 2003) (Meals, 2002) 

The Gartner Group, who has been credited with first using the acronym, made the 

TCO analysis a highly valued decision support and justification tool.  A TCO study is a 

case analysis of the direct and indirect financial costs incurred by using a specific product 

or combination of products.  A sound TCO analysis consists of more than the evaluation 

of the costs of acquisition, or implementation of a system; it also considers the costs for 

support, maintenance, downtime and out-sourced contracts; essentially all of the costs 

incurred during a system’s entire lifecycle. (Stevenson, 2003) (Gross, 2003) (Cohen, 

2003) 

Several other cost-based analytical instruments have been proffered by 

consultancy firms and in some cases the producers of IT products.  One tool, slightly 

different from the TCO and relying more heavily on the ROI analysis, is Giga 



 
 

64 

 

Information Group’s17 Total Economic Impact (TEI.)  The TEI analysis combines several 

modeling techniques and claims to return a “holistic” risk-adjusted ROI that is an 

appropriate decision support tool for both vendor and customer alike.  The Standish 

Group International18 enhanced the TCO with their Comparative Economic 

Normalization Technology Study (CENTS.)  CENT studies do not utilize any vendor-

supplied data, only input from customers.  Thus, it purports to give a more accurate view 

of the actual costs as seen by the consumer or end-user.  Even Microsoft has offered its 

own version of a TCO-like case analysis.  Their Rapid Economic Justification (REJ) 

method offers managers a quick method for evaluating a proposed deployment or other IT 

decision.  This tool promotes the idea that IT decisions cannot wait the months required 

for a traditional study to be concluded. (Cohen, 2003) 

The abundance of models and methodologies for appraising financial justification 

data marketed by IT research firms can easily dwarf the choices that comprise the original 

investment question.  It seems the principal problem for IT decision makers when 

planning a software purchase, upgrade or migration is how to acquire accurate, relevant 

and complete data with which to evaluate their software investment options. 

The investment analysis model presented in this paper has been compiled utilizing 

both pre-existing models and theories and concepts examined during the research.  This 

instrument, hereafter referred to as the Total Cost model or the model, is a descriptive 

spreadsheet model.  It was constructed to yield accurate and dependable financial 

decision metrics with as minimal input as possible.  Though the general goal of most 

private sector enterprises is to maximize profits, and that of public sector agencies is to 

obtain the maximum function with a minimum cost; they in effect are seeking the same 



 
 

65 

 

ideal, efficient use of capital.  The Total Cost model should work well with both types of 

organizations.  It should not be forgotten, however, that with any financial justification or 

decision support tool, the decision variables or resulting metrics are only as good as the 

data supplied.  Minor changes to an input variable can distort the results dramatically.  As 

the saying goes, “Garbage in, garbage out.” (Herbst, 1982) 

 

Modeling IT Capital Investments 

Many books are available which discuss the analysis and evaluation techniques 

for capital investments, also known as “capital budgeting”.  This paper will not attempt to 

provide any discussion on this subject except within the context of acquiring input 

variables and describing financial metrics.  Further readings on financial analysis and 

capital budgeting techniques can be found in the extensive reference listing at the end of 

this paper. (Stevens, 1983) (Helfert, 1994) 

Since the ultimate goal of most every business venture is to maximize profits, 

investment alternatives are frequently compared using financial analysis models which 

can be quantifiably evaluated.  The simplest form of business decision is where 

alternative cash outlays are compared to their return on the investment.  However, no 

single financial metric can provide a complete picture of a capital investment and 

therefore be used reliably as the sole decision variable.  The Total Cost model addresses 

this issue by providing a number of the most popular analytical metrics. (Lumby, 1988) 

A financial model is an abstraction of specific financial or cost-centric events that 

may occur during the situation being studied.  In the preparation of the any financial 

model it is essential to assess all of the significant and driving factors, and to refrain from 



 
 

66 

 

oversimplifying the circumstances.  A simplistic or over-generalized model may not 

accurately describe all situations to which it is applied, thus leaving open the possibility 

of miscalculations and factual misrepresentations.  By employing a well-constructed 

model, analysts can test variations on the represented system and evaluate the quantitative 

results that are returned.  A valid cost model is an essential component of any business 

case analysis that examines capital investments.  This is specifically true with any IT 

investment as the costs and benefits are often hard to isolate and present in easily 

comparable terms. (Anonymous[1], 1992) (Lumby, 1988) (Schmidt, 2003) 

The Total Cost model is a spreadsheet based financial analysis of the costs 

involved in implementing or migrating to a new software system.  Although it can be used 

to model a total implementation, it can be easily modified through the input of values, to 

model any partial or hybrid change.  Since much of its input will come from accounting 

data already available to the user, it is essential to completely understand how this data 

affects the results and how it can promote inaccuracies. 

One of the primary activities of a capital investment business case analysis is the 

discovery and isolation of related costs.  Any costs or purported cost figures that are not 

obtained through standard accounting procedures should not be used.  To avoid any 

accounting events which may skew the output it is recommended that all cost input 

figures be based on annual charges.  Figure 6 shows the accounting relationships of a 

capital investment model.  This illustration shows that the three major types of financial 

model input are: 

• The organization’s accounting or financial data, e.g. cash flows and cost of 

capital. 



 
 

67 

 

• Data related to the proposed investment, e.g. acquisition costs, 

prerequisites and constraints. 

• Historical data of the company and projections for its future. 

All of this input data can be gleaned from a properly executed business case analysis. 

(Helfert, 1994) (Schmidt, 2003) 

Since decisions concerning IT capital investments concern future events, it is 

important to include only those inputs that can actually be changed by the application of -

the proposal.  Such costs include preliminary studies of the alternative projects prior to 

their inception.  These “sunk” costs would be realized regardless of the alternative 

selected and cannot accurately or legitimately be expensed to the selected investment. 

(Helfert, 1994) (Herbst, 1982) 

Although the previous commentaries on F/OSS would lead one to believe it costs 

less than proprietary software because there is no license fee; it is not completely free.  In 

fact, when enumerating the cash flows during the lifecycle of a F/OSS system, it is critical 

to remember it is not cost-free.  Because software license fees or acquisition costs are 

often less than five percent of an organization’s system cost, they will only comprise a 

small portion of the TCO.  Therefore, the input variables of a TCO model will be 

dominated by system costs such as, customization, maintenance, support, training, 

administration, and special hardware needs throughout the system’s lifecycle. (Wheeler, 

2003) (Hahn, 2002) 



 
 

68 

 

Special
analysis

Pro forma
statements

Funds flow
analysis

Ratio
analysis

Financial model
(computer program)

Financial
data

Investment
data

Operating history and
future assumptions

Manufacturing or
service inputs

Sales
Inputs

Staff
inputs

 

Figure 6 - The relationships between the Inputs and Outputs of a financial model. 
(Source: Helfert, 1994) 

 

When selecting and using any business model it must be understood that models 

and other decision tools can be skewed to support most any position.  Neutrality in both 

the selection and use of decision support models is essential for reliable results, which 

then can be impartially reviewed.  The proper use of any investment model should 

provide pertinent decision variables that can be evaluated by management.  However, 

models alone are not sufficient to justify a capital investment.  Capital investments 

generally involve a complex set of issues that must be understood and resolved to an end 

beneficial to the company.  Capital investment decisions may have impacts beyond the 



 
 

69 

 

actual investment itself and its influence may also extend past the investment’s lifecycle.  

All capital decisions are long term commitments which will affect an organization for 

years and are not easily undone.  It is essential to remember that the decision not to invest 

is also a decision. (Wheeler, 2003) (Daffara; 2000) (Helfert, 1994) (Herbst, 1982) 

 

Hard versus Soft Costs 

A well executed IT capital budget case study will include an inventory of costs 

other than the obvious direct costs.  It will also identify any factor of the proposed 

investment that impacts the organization and attempt to give it a financial valuation.  Such 

a case analysis that includes a TCO study would include factors and valuations that can 

be classified within three groups: 

• Costs 

 Direct (e.g., license fees, implementations costs and consulting 

fees) 

 Indirect (e.g., downtime and training) 

• Benefits (i.e., performance, reliability and security) 

• Intangible factors (e.g., quality of support, futz factor and loss of 

productivity) 

The Total Cost model concentrates on and evaluates the first item, costs.  The 

other factors, benefits and intangibles, are equally important and should be addressed in a 

complete business case analysis, of which a cost model is but a part. (Kenwood, 2001) 

A cost model is essentially an organized listing of all costs, their impacts and 

drivers.  Direct costs are generally emphasized in investment case studies because of their 



 
 

70 

 

ease of discovery and comparison.  They are the tangible factors which are most easily 

followed through the system’s lifecycle.  However, the less visible costs or benefits such 

as performance, downtime, reliability and productivity losses due to the introduction of 

new software components need to be explained and put into quantifiable terms.  Although 

many indirect costs have attributes and relationships that are difficult to describe or 

quantify, they may be significant factors and should be investigated and considered in the 

decision making process.  Indirect costs are often included within a stated direct cost, but 

the relationship of these expenses should be examined by the case analysis.  For example, 

labor expense due to lost productivity is an indirect cost of a project, but there is no 

additional cost to apply to the analysis as the added cost should already be included in the 

total (direct) labor cost.  These indirect costs are not so much a new cost item as they are 

an adjustment to the cost of labor as a whole.  This sounds obvious, but knowing where 

costs originate is the purpose of any business analysis, and the origin of some may not be 

so evident.  It is essential to discover as many indirect costs and define their relationships 

to other costs as possible. (Kenwood, 2001) (Schmidt[1], 2003) (Herbst, 1982) 

(Anonymous[5], 2003) 

The direct and indirect costs of a F/OSS implementation are illustrated in the Cost 

Element Taxonomy for Open Source Software by Kenwood (Table 5.)  Direct costs of a 

software system can be easily measured and categorized throughout the lifecycle, 

however, indirect and other intangible costs are not as easy to isolate.  Even though 

factors such as performance, security and scalability do have a substantial economic 

impact; they are difficult to quantify, and thus face the possibility of exaggeration or 



 
 

71 

 

misstatement.  Any beneficial factors which cannot be evaluated in accounting (or 

financial) terms should be left in the business case analysis for review. (Kenwood, 2001)  

A major consideration when evaluating investments, is the benefits versus the cost  

of each alternative.  A system that costs more to acquire and implement, but sharply 

increases productivity may prove to be the wiser investment.  Thus, a higher cost system 

may be the better investment in contradiction to metrics such as ROI or TCO.  The 

evaluation of costs should also include the purchase or lease of the system or portions of 

it from third party vendors, which may increase the cost of acquisition, but in return 

reduce other costs considerably.  However obtained, all benefits should be weighed 

against the risks or costs of the specific alternative.  This is especially true with F/OSS 

since many hard to quantify benefits such as the ability to modify or customize code are 

some of its major advantages. (Kenwood, 2001) 

Benefits should be included in case studies regardless of their ability to be 

quantified or assigned any financial value.  Every effort should be tried to place a value 

on a benefit worth mentioning in the case.  Some ways to quantify a benefit that is not 

easily quantifiable are: 

• Place a financial value on its effects. 

• Set the value equal to that of the alternative solution. 

• Set the value equal to the cost of NOT applying the solution. 

(Schmidt[1], 2003) 

 
Direct Costs  
Software and Hardware  
 Software  
  Purchase price  
  Upgrades and additions 



 
 

72 

 

  Intellectual property/licensing fees  
 Hardware 
  Purchase price 
  Upgrades and additions 
Support Costs  
 Internal  
  Installation and set-up  
  Maintenance  
  Troubleshooting  
  Support tools (e.g., books, publications) 
 External 
  Installation and set-up 
  Maintenance 
  Troubleshooting 
Staffing Costs  
 Project management  
 Systems engineering/development  
 Systems administration  
  Vendor management  
 Other administration 
  Purchasing 
  Other 
 Training 
De-installation and Disposal 
 
Indirect Costs 
 Support Costs  
 Peer support 
 Casual learning  
 Formal training  
 Application development  
 Futz factor 
 
Downtime 

 
Table 5 - Cost Element Taxonomy for Open Source Software  (Source: Kenwood, 2001) 

 

A close scrutiny of training or support factors can reveal unexpected costs and 

benefits.  The current condition and type of system being replaced is an important factor 

that can impact the cost of a new implementation.  UNIX users would find it easier to 

transition to Linux or another UNIX-like system than would users of Microsoft’s 

Windows systems, for example.  Retraining costs and lost productivity would be higher in 

the latter case.  Additionally, IT staff members will typically train and accept new 



 
 

73 

 

systems faster than the typical end-user, but their education comes at a greater cost.  

However, such hidden expenses are not only an issue with new implementations, as every 

new software release or upgrade requires some user training which results in lost 

productivity.  Seamless, cost-free transitions are not always the case when simply 

upgrading an existing system. (Cohen, 2003) (Anonymous[9], 2002) (Scott, 2002) 

Other factors that can affect the TCO, such as personnel matters, are more 

obscure.  High employee turnover can increase the TCO by as much as fifty percent due 

to additional training and IT costs involving the new users.  The Gartner Group terms 

another issue the “Futz factor”, which is the indirect cost of employees using an 

organization’s computing assets for personal use during work hours (see Table 5.)  These 

expenses cannot be accurately measured, but should be considered in the overall 

evaluation of alternatives. (Hahn, 2002) (Kenwood, 2001) 

Other intangibles may be the real or perceived characteristics of the proposed 

system.  Detractors of F/OSS, for example, point out the lack of applications that are 

supported by F/OSS systems and the complexity of an end-user’s desktop system.  

However, this can be a benefit to a certain extent as it may reduce the effect of the Futz 

factor, as users have less access to games and other diversionary pastimes.  This alone can 

yield great savings when compared to a “user-friendly” system with a plethora of 

entertainment and recreational programs or simply the friendliness to allow diversions 

from one’s duties. (Kenwood, 2001) 

In order to accurately define costs, managers and analysts need to have a 

comprehensive classification, or matrix of costs, benefits and other intangibles occurring 

throughout the system’s lifecycle.  Table 6 shows a simplified version of a project cost 



 
 

74 

 

matrix which is similar to the cost matrix used in the Total Cost model.  This table is also 

a sort of cost model in itself, though it should be expanded upon as it is very shallow and 

does not cover every possible category.  A matrix such as this will help to track all 

expenses and other financial impacts and should aid in avoiding a duplication of cost 

allocations, or worse, overlooking a cost altogether.  The taxonomy presented by 

Kenwood (Table 5) can be used as an initial inventory of expenses, but a valid case and 

cost model must view all of these costs as they are allocated throughout the proposed 

system’s lifecycle.  Table 6 takes the listing shown in Table 5 and expands it to breakout 

the costs by the three major periods of a system’s lifecycle (excluding the end of life 

period which primarily concerns the system’s disposal and replacement.)  The Total Cost 

model provides a more detailed listing, which is generic by design and does not address 

costs according to the system’s lifecycle, but rather divides them by the annual periods of 

the study.  Completing a cost matrix such as illustrated in Table 6 is part of a thorough 

cost study and will provide input for the Total Cost model. (Kenwood, 2001) 

 

 Proposed Project’s Lifecycle 
Cost Category Acquisition and 

Implementation Operation Maintenance 
Direct Costs    

Software    
Hardware    
Support    
Personnel    
Contract Services    
Facilities/Overhead    
Additional Costs    

Indirect Costs    
User Training    
User Support    



 
 

75 

 

 
Table 6 - Project Cost Matrix – identifying expenses attributable to a project. 
 

Methods of Analysis 

Two major decisions must be made when constructing a cost model similar to the 

Total Cost model.  First, the resulting metrics that provide both descriptive and practical 

information must be selected.  The specific measures or metrics used by an organization 

should be selected by its management, since the same results will mean different things to 

different organizations and managers. (Morrow, 1991) 

Secondly, the input data, based on the requirements of the specific financial 

analysis must be determined.  In fact the choice of the organizations’ financial input data, 

though adequately prescribed by the formulas used in the model, are the most critical, and 

in some cases, the hardest to acquire.  Allocated costs should be avoided when they have 

been arbitrarily established.  Consistency regarding input variables is a must.  A TCO 

analysis, as in the form of financial analysis presented by the Total Cost model, is 

sensitive to both the data and the assumptions made about the investment. (Wheeler, 

2003) (Helfert, 1994) (Schmidt[1], 2003) 

Variables that are significant in the capital budget decision process are: 

• The initial cost of the project 

• The useful life of the project 

• Net incremental cash flows attributable to the project 

• The project’s salvage or disposal cost. 

• and, the organization’s cost of investment capital 



 
 

76 

 

These parameters together with other variables, both qualitative and quantitative, 

can provide the data needed for a reasonable and well-grounded investment decision.  

However, as mentioned previously, the acquisition of accurate data with which to 

populate these parameters is not a simple or even well-defined task. (Herbst, 1982) 

(Helfert, 1994) 

Capital budgeting requires the use of net cash flows, as opposed to accounting 

profits.  To accurately portray any investment option only the cash inflow, or receipt that 

can be directly attributed to the project must be used.  Cash flow figures are not easily 

obtained in a large organization, and may require external expertise to define.  However, 

without this distinction the “profits” attributed to a project may not actually be a result of 

its implementation, but rather some other source altogether.  Or, the inflow may even be 

the result of a synergistic effect of the project and another asset within the organization. 

(Herbst, 1982) 

Although the proposed model is called a “Total Cost” model, it presents metrics 

other than the simple TCO.  Some of the metrics presented by the model could be 

enhanced by employing other formulas, such as better representing the Time Value of 

Money (TVM), which suggests that a dollar received today is worth more than a dollar 

received five years from today.  This concept is true apart from inflation, since cash held 

today could be invested at a given rate making it more valuable that the dollar received in 

the future.  However, considering inflation or any other economic conditions merely 

confuses the idea that money today can be used to make more money.  Of course this 

would be in the future, and according to the TVM would be worth less than the originally 

invested dollar.  Other methods (or formulas) do exist which return different metrics; 



 
 

77 

 

nevertheless, the formulas used in the Total Cost model are the methods found most often 

during this research.  These metrics are listed in Table 8 along with the input data they 

require.  The actual spreadsheet formulas used in the model are displayed in Appendix G. 

(Stevens, Jr. 1983) 

In order to understand the following definitions of the financial analyses used by 

the Total Cost model, a clarification of some common terms must be made.  First, and 

possibly most importantly, the model uses cash flows that occur at the end of each year 

and are uneven.  Since a number of the resulting metrics can use either uniform or uneven 

cash flows this is important to understand; especially since the results can vary 

significantly depending on the type of cash flow.  Several of these analyses refer to the 

MARR, or the Minimum Accepted Rate of Return.  This is the minimum interest rate that 

an organization expects to receive from any investment and is sometimes called the 

“hurdle” rate.  The cost of capital variable as mentioned in the following metric 

definitions should represent an accurate estimation of future finance rates and not be 

based on historical values.  The Total Cost model does not require a specific tax weighted 

value, but a before tax interest rate is suggested for input values for simplicity. (Stevens, 

Jr., 1983) 

The analytical metrics returned by the Total Cost model are: 

• Total Cost of Ownership – The definition of TCO is not at all well 

established, except that it is the sum of the cost drivers, or cash outlays for 

the subject of the study during the length of that study or for its complete 

lifecycle.  The disparity concerns both the selection and manipulation of 

the input data, but it is generally agreed that the solution with the lower 



 
 

78 

 

TCO is the best choice (all other things being equal.)  The major drawback 

to the TCO methodology is that it is dependent on any assumptions or 

input data, which vary depending on the exact model used. 

o Decision rule: The alternative with the lowest TCO should be selected. 

• Simple Return on Investment (ROI) – The Simple ROI states the rate of 

return of all cash flows over the period of analysis.  This formula does not 

take into account the time value of money. That is, money returned earlier 

in an investment is worth more than money received at the end.  The 

formula which is used in this model for the Simple ROI calculation is: 

ROI = (incremental inflows - incremental outflows) / incremental outflows 

o Decision rule: The alternative with the larger Simple Return on 

Investment is the better investment. 

• Discounted Return on Investment (ROI) – The Discounted ROI states 

the rate of return of all cash flows over the period of analysis with those 

cash flows discounted to their present value.  The timing of cash flows is 

critical to an accurate discounted ROI measure because it is a time value 

based calculation, and money returned earlier in an investment is worth 

more than money received later.  The discounted ROI formula used in this 

model is: 

ROI = (Discounted incremental inflows – Discounted incremental 

outflows) / Discounted incremental outflows 

o Decision rule: The alternative with the larger Discounted Return on 

Investment is the better investment. 



 
 

79 

 

• Payback Period – This is one of the more basic capital budgeting 

measures; it simply states when the project will pay for itself.  Usually 

stated in months or years it is the point at which the cash outlays match the 

revenue or income attributable to the project.  The Total Cost model 

returns the Payback Period in years, with the fraction of a year (months) in 

decimal form.  The Payback method has several major drawbacks that 

should be taken into account when comparing its metrics.  First, it does not 

recognize the cost of funds utilized or consumed by the investment; 

secondly it does not consider any return or cash inflows beyond the 

payback period, and finally it does not acknowledge the time value of 

money.  Although it has these limitations, it is often used as a measure of 

the effectiveness of an investment. 

o Decision rule: The investment that meets or approximates the 

organization’s requirement for payback should be selected.  Faced with 

a selection of alternatives the investment with the lowest Payback 

period should be chosen 

• Discounted Payback Period – This form of the Payback calculation uses 

cash flows that have been discounted to a present value using the currently 

selected cost of capital.  Just as with the simple Payback method it, too, 

states when the project will pay for itself in years. 

o Decision rule: The investment that meets or approximates the 

organization’s requirement for payback should be selected.  Faced with 



 
 

80 

 

a selection of alternatives the investment with the lowest Payback 

period should be chosen 

• Internal Rate of Return (IRR) – This is a Time Value of money metric 

related to the Net Present Value (NPV.)  It represents the discount 

(interest) rate at which the NPV is zero.  The IRR is the rate of return 

provided by the project over its lifetime or the analysis period.  Since the 

returned metric is based on an NPV of zero, it could be assumed that the 

IRR is calculating the break-even point at the specified interest rate.  

However this is not a true breakeven point as the returned interest rate 

might actually cost the organization money if it is not equal to or higher 

then the MARR. 

o Decision rule: Investments should only be made in projects where the 

IRR value is greater than or equal to the organization’s MARR. 

• Modified Internal Rate of Return (MIRR) – This metric considers both 

the cost of the investment (cash outflows) and the interest received on 

reinvestment of cash inflows.  The finance rate is the organization’s cost of 

capital and the reinvestment rate is the interest rate received on money 

reinvested (usually the MARR.)  The MIRR is an Excel function and the 

actual algorithm or formula is not available, though it is a standard formula 

found in most spreadsheet applications.  The MIRR function returns the 

Modified Internal Rate of Return for a series of periodic cash flows. 

o Decision rule: Because this metric reinvests all cash inflows from the 

investment, the returned value should be greater than or equal to the 



 
 

81 

 

organization’s predefined interest rate for a return on an investment (or 

MARR.) 

• Net Present Value (NPV) – The NPV uses the Present Value of money 

concept to represent the sum of cash flows as adjusted for the time value.  

The NPV calculation uses the MARR as a baseline to sum the net cash 

flows to a present value.  A positive NPV can be viewed as the excess 

profit above the return of the original investment and the reinvested 

returned cash (reinvested at the MARR.)  A negative metric reveals the 

amount of capital lost through the investment including any returned cash 

reinvested at the MARR.  The simplified formula for the NPV is: 

NPV = discounted cash inflows - discounted cash outflows 

o Decision rule: Investments should only be made in projects with an NPV 

greater than or equal to zero. That is, only positive values. 

• Net Present Value (NPV Sum of Discounted net cash flows) –  This 

NPV measure is derived by summing the discounted net cash flows for 

each year in the analysis. 

o Decision rule:  Investments should only be made in projects with an 

NPV greater than or equal to zero. 

• Profitability Index (PI) – This ratio is a measure of a proposal’s 

profitability per dollar invested.  A value of 1 or higher indicates an 

investment yield greater than the cost of the project based on the cost of 

capital (discount rate.)  The Profitability Index formula is: 

PI = discounted cash inflows / discounted cash outflows 



 
 

82 

 

o Decision rule: The investment with the highest PI has the best 

profitability and should be selected. 

(Anonymous[10], 2003) (Helfert, 1994) (Finney, 1994) (Wheeler, 2003) (Clark.,1984) 

(Cohen, 2003) (Stevens, Jr., 1983) (Larson, 1993) 

 

The Total Cost Model 

Whether you call the Total Cost Model a financial model, a workbook or a 

spreadsheet, it is nothing more than a tool for comparing input data and showing possible 

numerical relationships.  All of its results can be interpreted in different ways, just as the 

same statistics can be used to validate opposing opinions. 

 
Worksheets 

Orde
r 

Name Purpose 

1 Common Data Current, general and common organization data 
2 Alternative System Costs Cost data for each Alternative (3 total worksheets) 
3 Cost Analysis Cost analysis based on data from worksheets 1 & 2 
4 Graphical Analysis Graphical display of the cost data from worksheet 

3 
5 Concepts and 

Instructions 
General model user help 

 
Table 7 - Description of the worksheets within the Total Cost Model. 

 

The Total Cost model is a spreadsheet (or workbook) that consists of eight 

worksheets, or tabbed pages (see Table 7.)  It was created using Microsoft Excel 2003, 

version 11.  Since it allows the simultaneous comparison of three alternative projects, it 

required a good deal of programming code to provide logical flow, error checking, data 

validation and arithmetic calculations to be significant.  See Appendix H for examples of 



 
 

83 

 

the Visual Basic for Applications (VBA) programming code used to control the 

workbook.  The Total Cost model is contained in the file named “Cost_Model.xls”.  All 

screenshots in the following text were captured on a Windows XP system running 

Microsoft Excel 2003; however, the workbook was also tested using Excel 2000 running 

under the Windows 2000 operating system with no problems or anomalies noted.  No 

guarantee is made that the workbook will perform as described on older versions of 

Excel, so care should be taken to further insure that the results obtained on such systems 

are accurate.  Many of the programmed functions are interdependent, thus it is 

recommended that the spreadsheet be used without any modifications. 

In an effort to protect users from macro (or programming code) viruses embedded 

within workbooks, Excel employs a Macro Security scheme which has four levels of 

protection.  The two highest levels only permit macros from “trusted” sources to be run.  

Since the model will not function as designed without the use of its macros, Excel’s 

Macro Security level should be set to Low to ensure that the model works properly.  It is 

also important to remember that Excel cannot detect any specific virus, and all of its 

warnings about macro viruses are general warnings about a possible problem. 

The Total Cost model provides the following features: 

• The model supports results and income of up to $999,999,999,999.99 (One 

cent less than one trillion dollars). 

• Study lengths can be customized as needed (one, three, four or five years). 

• One to three alternative systems can be evaluated simultaneously. 

• Each system can add up to five user defined cost fields. 



 
 

84 

 

• Worksheets can easily be printed to serve as a hard copy worksheet or 

scratchpad 

• Four charts are predefined, though the user can add more using Excel’s 

built-in charting capabilities 

• Ability to print or e-mail the results or the entire workbook from the 

worksheet’s custom menu (see Navigating through the Model) 

• A user Options or Preferences interface that allows customizing the 

following settings: 

o Automatic workbook backup at startup  

o Display of the workbook in full screen mode 

o Show the splash dialog during startup 

o Show row and column headers 

o Screen display percentage (ZOOM) 

Many calculated cells have been placed in “hidden” columns to protect them from 

unintended manipulation.  These cells are essentially scratchpad calculations and values.  

For a better understanding of how the Total Cost Model collects and calculates its values, 

unhide columns J through P on the Proposed System Data sheets; and columns L through 

P on the Cost Analysis sheet to view these cells. 

 

How the Model Works 

The true beauty of the Total Cost model is that the input can be continually refined 

and updated as the user acquires new information or means of stating their accounting 



 
 

85 

 

data.  The main concern when preparing your accounting data for input into the model 

should always be:  The output is only as reliable as the input. 

There are six basic steps to using the Total Cost model: 

1. Determine what data you will use and how that data will be acquired. 

2. Assemble the data as required by the model. 

3. Enter the general organization data on the first worksheet, "Common Data". 

4. When a name is entered in a "Proposed System" cell on the Common Data 

worksheet a new worksheet will be displayed to contain the cost values of that 

alternative system.  The new worksheet will be named after the value entered 

into the Proposed System cell. 

5. On each Proposed System worksheet, enter the system specific costs; each 

worksheet defines the cost variables for one system. 

6. Finally, view the worksheet "Cost Analysis" for the results of the analysis.  

This worksheet is automatically updated when all of the appropriate data is 

entered.  Since some calculations do not require every piece of data that can be 

entered into the model, results will be presented once there is sufficient data to 

calculate that value.  Charts are displayed on the worksheet “Graphical 

Analysis” which becomes visible as soon as there are results to plot. 

Each worksheet has help information specific to it below the input areas.  More 

comprehensive help is available on the “Concepts and Instructions” worksheet (Figure 7.)  

Further assistance is available through Excel’s commenting feature, which is used 

extensively throughout the model. 

 



 
 

86 

 

Acquiring the Data 

Before using the Total Cost Model, you should familiarize yourself with capital 

investment analyses such as ROI, IRR, and NPV. 

Once you understand how to use this model and the information it provides, the 

first and most important step is the acquisition of input data.  Though this information 

may come from an organization’s accounting records, some users may find it easier to 

take the standard accounting data and conform it to the needs of the model. 

 
 

Figure 7 - Concepts and Instructions worksheet 
It is best to use revenue cash flows that represent the difference between the 

"business as usual" figures and those achieved with the implementation of the proposed 

project (investment.)  Thus, the revenues should represent the benefits provided by the 

new system and the expenses, the costs directly assignable to it.  However, if cash flows 



 
 

87 

 

cannot be attributed directly to computer systems or other IT managed resources, use the 

company's total revenues.  Though this may not be as accurate, it will provide a valid 

comparison since each alternative will have the same revenue.  As with any projected cost 

model such as this, there will always be some disagreement in its execution. 

Another important question to answer when deciding on which accounting figures 

to use is; should you use only marginal (additional) or total costs.  The idea behind 

capturing capital investment metrics is exposing and identifying the added or marginal 

costs behind a proposed investment.  For example, should the complete expense for all of 

the organization’s employee end-user training be used or just the amount of change 

required by the proposed project?  This is up to the user to decide, however, consider the 

data collection and usage as a whole and be consistent.  Total expenses should include 

any marginal costs so they would be acceptable.  To provide accurate results the same 

type of numbers should be used throughout the analysis, this includes the Common 

organization data on the first worksheet. 

 

Metric Required Data 
Total Cost of Ownership (TCO) Cash outflows, project expenses, or cash outlays 
Simple Return on Investment 
(ROI) 

Evenly spaced (regular intervals) series of periodic cash 
flows  (incremental inflows and outflows) 

Discounted Return on 
Investment (ROI) 

Evenly spaced (regular intervals) series of periodic 
Discounted cash flows (incremental inflows and outflows) 

Payback Period  Evenly spaced (regular intervals) series of periodic cash 
flows  (incremental inflows and outflows) 

Discounted Payback Period Evenly spaced (regular intervals) series of periodic 
Discounted cash flows (incremental inflows and outflows) 

Internal Rate of Return (IRR) Evenly spaced (regular intervals) series of periodic cash 
flows (incremental inflows and outflows) 

Modified Internal Rate of 
Return (MIRR) 

Evenly spaced (regular intervals) series of periodic cash 
flows (incremental inflows and outflows), and a cost of 
capital and reinvestment interest rate (MARR) 

Net Present Value (NPV)  An interest rate required by the organization, and a evenly 



 
 

88 

 

spaced (regular intervals) series of periodic cash flows  
incremental inflows and outflows) 

NPV - Sum of Discounted Net 
Cash flows 

An interest rate required by the organization, and a evenly 
spaced (regular intervals) series of periodic Discounted 
cash flows (incremental inflows and outflows) 

Profitability Index (PI)  Evenly spaced (regular intervals) series of periodic cash 
flows (incremental inflows and outflows) 

 
Table 8 - Data requirements for the metrics as calculated by the Total Cost Model 

 

Some of the model’s calculations require that the cash flow be stated as 

incremental flows; however, the insertion of total data is supported, though it will return a 

lesser set of resulting metrics.  Regardless of the manner of selecting data, the model will 

produce valid metrics based on the data.  The model simply provides the user with 

financial metrics calculated using the data supplied to it; all results are based on the input 

data. 

Navigating through the Model 

Other than the VBA programming code (macros) which provides structured data 

entry and advanced error control, the Total Cost Model functions as any Excel workbook.  

It is a collection of tabbed worksheets displayed in a multiple document interface (MDI.)  

Each worksheet is activated and brought to the front of the other worksheets by clicking 

on its tab.  Most every standard Excel navigation technique is supported, though some 

actions may either be disallowed or hampered by macros.  This is especially evident as all 

of the worksheets are “protected” by default using Excel’s worksheet level protection, 

which prevents changes them.  In the case of the Total Cost model, the worksheet 

protection prevents a user from changing its formatting and underlying formulas.  This 



 
 

89 

 

feature can be over-ridden, but it is best to leave it activated, as any user can inadvertently 

damage the model’s structure, thus rendering its results unreliable. 

Access to the extended functionality of the Total Cost model is afforded by the 

selection of either a menu item or a command button (see Figure 8.)  Each worksheet has 

hyperlinks or buttons that will provide services or run processes.  Most every navigation 

aid and function provided by buttons located on the worksheets is also available from 

Excel's main menu.  The "Total Cost Model" menu is located next to the standard Excel 

Help menu.  It supports many functions and is context based, so only menu items which 

are relevant to your current activity are available. 

 

 
 

Figure 8 – The Total Cost Model’s menu and command button design. 
 

Entering Data into the Model 

The variables on the Common Data worksheet apply to the entire organization and 

are applied throughout the model.  These are the constants used in evaluating each 

system's own cost variables.  To start entering data in this worksheet, first select a length 



 
 

90 

 

of the analysis in years (the Period), then, enter the organization’s cost of capital.  From 

this point on the required numbers are basic accounting or money figures.  Hover the 

mouse pointer near the small red triangles located in some of the cells to display the cell 

comments that explain the required input or the calculations that have been produced (see 

Figure 9.) 

Although most of the Common Data input is straightforward, the model’s data 

validation routines will catch many types of input errors that may occur.  The following 

input data are required by the Total Cost model (see Table 9): 

• Analysis Period - Choose the number of years for the cost analysis; one, 

three, four, or five years only.  A one-year period works well when only 

one set of inflows and outflows are available. 

• Cost of Capital - The organization's cost for borrowing investment capital.  

If there are several rates available, use an average.  Remember that this is a 

future interest rate. 

• Reinvestment Interest Rate (MARR) - This value is the interest rate paid 

to the organization for reinvested cash.  This could be bank interest or the 

required rate of return for investing in other projects.  This value is also 

known as the MARR, or the Minimum Accepted Rate of Return. 

• Total Current Revenue (Year 1 of analysis) – This value is the 

organization's Total Revenue for the first year of the study.  This should be 

the total of all revenue attributable to the proposed system for the first 

year, however if this number is not available use the organization’s total 

revenue.  As long as comparable figures are used, there should be an 



 
 

91 

 

accurate comparison between the competing systems.  Future cash inflows 

(revenues) can be estimated by entering a "Projected Yearly Growth Rate", 

or the annual figures can be manually entered.  Using the Growth Rate will 

provide a constant growth in revenue, which may or may not be realistic 

for the organization or industry.  Holding the revenue constant will make 

for easier interpretation of the TCO results.  Revenue numbers weigh 

heavier in the ROI, IRR, NPV and Payback calculations. 

• Projected Yearly Growth Rate (optional) - Use this variable instead of 

providing values separately for each year under "Yearly Total Revenues".  

This value will be used to compound each year’s revenue to produce the 

"Yearly Total Revenues" values.  The starting value for these calculations 

is the "Total Current Revenue", which is the first year’s revenue within the 

analysis. 

• Yearly Total Revenues – These values are either automatically calculated 

by compounding them using the growth rate as previously entered, or by 

manually entering values into the cells. 

• Proposed Systems - These values will only be used to "label" the results.  

They have no meaning to the financial metrics and can be anything 

alphanumeric, the shorter and more informative the better.  For the proper 

display within the model, the names should be twenty characters or less. 

Other than entering cost values within the cells of the Alternative System Costs 

worksheet, the only other feature to note is the use of user-defined cost fields.  Up to five 

custom system cost fields can be added to the Proposed System worksheets.  Each user-



 
 

92 

 

defined field will allow itemizing expenses by each Period in the study, just as with the 

other fields.  Once added on one worksheet, every proposed system will have the same 

fields available on their respective worksheet, so this only needs to be done once for the 

entire study.  After the rows have been added both the field label and all of the values for 

each year can be changed. 

Adding, modifying or deleting user-defined cost fields is performed by clicking 

the Add/Edit Fields button, at the end of the static cost categories (next to the label "User 

Defined Costs" category label.)  This opens a dialog box from which you can add, modify 

or delete up to five custom fields.  The interface is very simple to master, however, for 

safety's sake it should be tried before entering any critical data into the model. 

 
Worksheet Required input 
Common Data Analysis Period 
 Cost of Capital 
 Reinvestment Interest Rate (MARR) 
 Total Current Revenue (Year 1 of analysis) 
 Projected Yearly Growth Rate 
 Yearly Total Revenues 
 Proposed System Names 
Alternative System Costs System costs by Year, then by Cost category  
 User defined costs as needed (optional) 

 
Table 9 - Input data requirements by worksheet 

 

Viewing the Results of the Analysis 

All of the financial metrics calculated by the Total Cost model come from cash 

flows that occur at the year’s end and are not uniform (uneven.)  This is important to 

remember as metrics such as the NPV and the Payback period, for example, can be 

calculated both with uniform and uneven cash flows.  Any study of the model’s results 



 
 

93 

 

should take the input data into account.  More insight into how the model calculates its 

values can be obtained by examining the formulas it uses.  These formulas, as copied 

directly from the workbook’s cells, are displayed in Appendix G. 



 
 

94 

 

 
 

Figure 9 - Common Data worksheet



 
 

95 

 

Attempting to make generalized interpretations of the results produced by the 

Total Cost model would be futile, and in fact misleading.  Capital budgeting requires that 

the decision makers predict the future, and there will always be differing visions.  

Additionally, the selection of alternative investments relies on both intuition and a 

knowledge of the specific situations being studied, which makes financial analyses just a 

portion of the complete decision process.  The descriptions of the financial analyses (see 

Methods of Analysis) used by the Total Cost model should be sufficient for any user to 

draw elementary conclusions based on the calculated metrics.  The Cost Analysis 

worksheet provides a minimal analysis of the “Best Performing System” which simply 

selects the alternative that meets or exceeds the decision rule as stated on both the 

worksheet and in the previous discussion.  This evaluation is provided as a convenience 

and may not be accurate considering the total scope of the decision in question. (Larson, 

1993) 

The results of the Total Cost model are displayed numerically on the Cost 

Analysis worksheet (Figure 10) and graphically using charts on the Graphical Analysis 

worksheet (Figure 11.) 

The Cost Analysis worksheet contains information in three distinct areas: 

• Itemized Total System Costs by cost category – This listing shows the 

totals of each cost category for each alternative (or proposed) system, and 

the total cost for the systems 



 
 

96 

 

 
 

Figure 10 - Alternative System Costs worksheet (3 year analysis period)



 
 

97 

 

• System Cash Flows by Year - This section displays each alternative 

system’s Expenses (Outflows), Revenues (Inflows), Cumulative 

Incremental cash flow, and the Net Incremental cash flow by year.  Totals 

of all these yearly figures are also calculated, with the exception of the 

Cumulative Incremental cash flow, which by definition has no total. 

• Financial Metrics – The ten resulting metrics, or financial analyses, are 

presented with a comparison against each alternative using the decision 

rule as a basis.  The best performing metric, according to the decision rule 

as previously stated, is noted. 

The Cost Analysis worksheet also includes several command buttons that provide 

the following additional functionality beyond the calculation of the financial metrics: 

• View Graphs – Moves the focus to the Graphical Analysis worksheet, 

which shows the analysis’ results plotted on Charts. 

• Print the Results - Opens the Cost Analysis worksheet in an Excel Print 

Preview window.  The worksheet is ready to print with margins and page 

breaks already set, however these settings can be changed to match both 

your printer and your preferences. 

• Mail the Results – This button opens a form that allows the sending of 

specific portions of the workbook, or the entire file, to any valid e-mail 

address.  This is a convenient way to share the results or transfer the Cost 

Model to another computer. 

 



 
 

98 

 

 
 

Figure 11 - Cost Analysis worksheet



 
 

99 

 

• ReCalculate the Results – This button forces the Cost Analysis 

worksheet to refresh by recalculating it’s values. 

The last analysis page, "Graphical Analysis", provides four predefined charts of 

the model’s resulting metrics.  Though the results are presented in clearly defined and 

generally accepted financial metrics, graphical representations may enhance the users 

understanding of these numerical values.  Figure 12 shows the Graphical Analysis 

worksheet reduced to a screen display of thirty-five percent to show the entire chart on 

one screenshot.  As with any Excel workbook the user can add or modify charts as they 

wish.  The charts are provided as a sample of ways to contrast the results of the model.  

Briefly explained, the four predefined charts are: 

• Total Costs during “x” Years of Analysis - This chart plots the total 

costs for each system on a line chart.  Since a line chart does not provide 

any valid information for a one-year analysis, it is not available in this 

case. 

• Comparison of Internal Rate of Return Metrics – This is a comparison 

of the IRR with the MIRR for each alternative system displayed as a 

column (vertical bar) chart. 

• Breakdown of Total Cost for… - The percentages breakdown of each 

cost category for the alternative systems is displayed in pie charts. 

• Comparison of all Investment Return Measures – This is a column 

chart comparing the rate of return metrics for each alternative.  The values 

displayed on the chart are: 

 Simple Return on Investment (ROI) 



 
 

100 

 

 Discounted Return on Investment (ROI) 

 Internal Rate of Return (IRR) 

 Modified Internal Rate of Return  (MIRR) by system 

 

 
 

Figure 12 - Graphical Analysis worksheet (display reduced to thirty-five percent) 
 

Preferences 

The Preferences or Workbook options form is a central location for performing 

several routine configuration or file maintenance procedures.  It is accessed either by 

clicking the Preferences command button on the Common Data worksheet, or by 

selecting the “Preferences/Options...” menu item from the Total Cost Model menu.  The 

Preferences form offers the following features: 



 
 

101 

 

The System information section provides a display of the version of Microsoft 

Excel and the operating system currently running on the PC, and the amount of memory 

that the Total Cost model is currently using (in bytes.) 

 

 
 

Figure 13 - Preferences / Workbook options dialog box 
 

The Current Filename section displays the filename of the currently loaded Total 

Cost Model file.  Clicking the “Change Filename or Path...” button opens the standard 

Windows Save As dialog box with the current filename used for the filename to be saved.  

The button labeled “Backup the Workbook...” runs a preset backup procedure that also 

opens the Windows Save As dialog box, but appends the current date as an identifier to 

the filename.  The latter method still allows for user changes to both the filename and the 



 
 

102 

 

destination (or file path) prior to saving the file.  All of these file procedures allow the 

user to cancel the operations once they have been called. 

The Program Options section configures several features that can be set using 

Excel’s own menus or controls.  However, they are made available here for convenience 

and the settings are saved to the Custom Document Properties of the Total Cost model.  

By using the Custom properties feature of an Excel document, the settings are guaranteed 

to be used regardless of where the Total Cost model is opened (as long as a compatible 

version of Microsoft Excel is used.) 

The first four settings are toggle settings, meaning they are either on or off.  The 

last one, the Screen Display or Zoom value, is changed by either entering a value or 

clicking the spinner buttons at the right side of the input box.  The five option settings 

are: 

• Automatically create a backup copy at startup – This runs the auto 

backup routine and prompts for permission to backup the workbook file 

when you open the Total Cost model. 

• Display this workbook in Full Screen mode – This toggles between full 

screen and standard view.  Full Screen mode may hide your favorite 

toolbar and the worksheets tabs so be aware that navigating through the 

workbook may be cumbersome when using this setting. 

• Show the splash dialog during startup – Prevents the Splash dialog box 

with the disclaimer from appearing when you open the Total Cost model 

workbook. 



 
 

103 

 

• Show Row and Column headings – This setting toggles the display of 

the row and column headings, which may give some much needed 

additional viewing area on a small display. 

• Set the Screen display (ZOOM) – The values entered here either 

increase or decrease the display size of the workbook view, and must be 

between 10 and 400 and.  The values are percentages, so a value of 100 is 

twice the size of 50. 

 

Resetting the Model 

In order to reuse the Total Cost model or “zero-out” all of the settings of a 

proposed system, a user could simply edit the values themselves.  However, this can be 

time consuming, and, leaving only one orphaned cost variable could skew the results of 

the next analysis, providing erroneous data.  To facilitate the accurate resetting of the 

values within the workbook several routines are available.  All of these procedures will 

reset the input values of the selected component changing the current values to the 

default values, either zero or a blank (an empty cell.)  The only exception to this is that 

the value of the analysis period is set to five as its default value.  Resetting the Common 

Data worksheet will remove all of the Alternative System Costs worksheets since they 

are the product of having a Proposed System name entered on that sheet. 

To reset the entire model, or just the Common Data or Proposed System 

worksheets click the “Reset Values…” button at the top of the input area of the Common 

Data worksheet or from the Total Cost menu.  This will display the “Reset User supplied 

data” dialog box (see Figure 14.)  From this form, you can select to reset: 



 
 

104 

 

• The Common Data Only – resets only the data on the Common Data 

worksheet 

• All System Data – resets the Proposed System worksheets data to zero 

and removes any user-defined fields. 

• All Model Input Data – this will reset ALL of the data in the Cost model 

to their defaults. 

• Show the splash dialog during startup... – toggles the display of the 

Total Cost Model’s Splash dialog that is shown while the workbook loads. 

Each of the active Alternative System worksheets also has a button located at the 

top of its input area that will initiate a resetting of the current worksheet only.  There are 

confirmation dialog boxes to protect a user from inadvertently deleting input data during 

these processes however; they should still be performed with caution, as any deletion is 

permanent. 

 

 
 

Figure 14 - Reset the model data dialog box 



 
 

105 

 

Conclusion 

 

The research presented in this paper shows F/OSS to be a viable alternative to 

proprietary or closed source software systems.  Additionally, the Total Cost model is 

proffered as a valuable tool with which to evaluate its true cost to the organization.  

Approaching any investment question with preconceived opinions unjustly skews the 

analysis and renders it worthless.  Previously mentioned research points out that no 

model can single-handedly be used to justify an IT system investment, and that both 

intuitive knowledge of the situation and business case studies are required to present a 

comprehensive set of decision variables.  Properly used financial models only provide a 

limited set of metrics that should be evaluated by management within their decision 

process as a whole.  Capital investments generally involve a complex set of issues and 

the Total Cost model can be a valuable tool in reducing this complexity. 

The research reviewed for this study noted that F/OSS provides numerous 

advantages over proprietary or COTS including, but not limited to: 

• Inexpensive or free software – no license fee. 

• No license management costs or license related legal risks. 

• Less dependence on a specific product or vendor. 

• Users are not bound to the strategic decisions made by a vendor. 

• Increased competition within software markets reduce costs and increase 

quality. 

• Improved security, as source code can be verified and certified by outside 

sources. 



 
 

106 

 

• Open standards and formats 

• Evolving software, user supported and user driven. 

• Rapid release rate; fixes, patches and new versions are released often 

• Immense and highly motivated programming expertise provided by 

Internet connectivity. 

F/OSS does have weaknesses that should be weighed against its strong points in 

any balanced IT investment case.  These drawbacks include: 

• Potential need for extensive migration to replace proprietary systems. 

• May require in-house development and maintenance skills within the 

enterprise. 

• Product selection could be difficult (limited marketing). 

• No brand name assurance. 

• Resistance among decision makers, IT personnel and end-users (fear of 

change). 

• F/OSS licenses do not permit ownership. 

• More highly educated or skilled administrators may be needed to maintain 

F/OSS. 

F/OSS has a history that promotes both innovation and cooperation. It is 

consistently used in demanding and evolutionary environments such as the infrastructure 

of the Internet.  Specific applications may or may not be appropriate for a given task or 

organization, however they are worth considering for any software implementation. 

For critics of spreadsheet based financial models, it should be noted research has 

revealed that possibly twenty to forty percent of all spreadsheets contain some type of 



 
 

107 

 

error.  This has been corroborated by other earlier studies cited by Panko.  One such 

study suggests that the error rate is up to ninety percent on spreadsheets that are larger 

than 150 rows of data.  However, an increase in the number of errors found by both 

developers, consultants or researchers, may be due to better methods of auditing, or is 

possibly due to increasing end-user development of complex spreadsheets. (Panko, 1998) 

Such errors should not apply to the Total Cost model since it does not rely on 

overly complex and customized formulas, and the data range of each worksheet is well 

below 50 rows.  All of the model’s calculations are available to view and no 

programming is hidden from the user.  So, as with F/OSS, the source code of the Total 

Cost model is verifiable; and it is free, as in speech, not as in beer. 

A striking aspect of this work with F/OSS and cost analyses is that the cost model 

was created using a market dominating closed source spreadsheet application, Microsoft 

Excel.  It may even seem ironic that Microsoft’s own product could be used to reveal it’s 

own uncompetitive costs (should this be the case.)  But, Excel is the most widely used 

spreadsheet application and thus provides a greater set of potential users. 

Future work in the area of software TCO should include the creation of a model 

using a F/OSS application such as OpenOfice.org’s Calc or the GNU applications 

KSpread or Gnumeric.  This would allow organizations to perform a cost analysis 

without having to purchase any software.  Another possible project would be to construct 

a web-based cost model using PHP, Perl and MySQL.  The Total Cost Model could also 

be revised to produce a more generic tool that would be applicable to any capital 

investment analysis.  Regardless of any new facade given to the model, variations and 

improvements are always be possible. 



 
 

108 

 

 



 
 

109 

 

Endnotes 
 
 
1 The term hacker is not a pejorative word to computer scientists.  It means an 

enthusiastic programmer, not one who writes malicious code.  For a complete definition 

see: http://info.astrian.net/jargon/terms/h/hacker.html 

2 GNU is a recursive acronym for “GNU's Not UNIX'”; it is pronounced "guh-NEW”. 

3 fetchmail is remote-mail retrieval and forwarding utility program maintained by Eric S. 

Raymond.  The fetchmail homepage is found at:  http://www.catb.org/~esr/fetchmail 

4 International Data Corporation (IDC) is a worldwide research and market intelligence 

company.  The IDC homepage is: http://www.idc.com 

5 RedHat Software is a publicly traded distributor of Linux and Linux related products.  

The RedHat homepage is:  http://www.redhat.com 

6 PostgreSQL is an OSS Database Management System, its homepage is: 

http://www.postgresql.org 

7 Porting is the rewriting or recompiling of a program to enable it to run under a different 

operating system or hardware platform. 

8 Minix information, including how to download a copy of the software can be found at 

the Minix homepage: http://www.disi.unige.it/person/DoderoG/minix/info-20.htm 

9 Suse Linux is a German distributor of Linux and Linux related products.  Their 

homepage is: http://www.suse.com/us/index.html 

10 Mandrakesoft is the French vendor of the Mandrake distribution of the Linux 

operating system and Linux related products and services.  Their homepage is:  

http://www.mandrakelinux.com/en 



 
 

110 

 

11 O'Reilly & Associates, Inc is an extensive source for F/OSS books, conferences and 

other learning venues.  Their homepage is:  http://www.oreilly.com 

12 NetBSD is a product of the NetBSD Project.  The software is licensed under the BSD 

License and is OSD compatible.  The NetBSD Project homepage is:  

http://www.netbsd.org 

13 The Gartner Group is an international IT research and consulting firm.  The company’s 

homepage is: http://www.gartner.com 

14 The root user is a UNIX term for the highest-level user; it is comparable to an 

administrator on a Windows system.  The root has no restrictions on its activity on a 

system, and therefore is rarely used.  Most system administration is performed by users 

with specific privileges that are less than those of the root user. 

15 Forrester Research, Inc is an IT business research and consulting firm, of which the 

GIGA Information Group is a wholly owned subsidiary.  The company’s homepage is:  

http://www.forrester.com 

16 The SCO Group (SCO) is a software and enterprise solution provider.  In March 2003, 

they filed a lawsuit against IBM concerning the illegal use of their UNIX intellectual-

property (source code and algorithms) within the Linux operating system.  The property 

in question is source code allegedly provided by IBM to the Linux project.  The 

homepages of these two corporations are:  http://www.sco.com  and 9+8 

http://www.ibm.com/us 

17 Giga Information Group is a subsidiary of Forrester Research, Inc., and provides 

technology investment decision support tools to companies and institutions.  The 

company’s homepage is:  http://www.gigaweb.com/homepage/ 



 
 

111 

 

18 Standish Group International is an international IT research and consulting firm.  The 

company’s homepage is:  http://www.standishgroup.com/ 



 
 

112 

 

Appendix A - The GNU General Public License 

 
Version 2, June 1991  
Copyright (C) 1989, 1991 Free Software Foundation, Inc.   
59 Temple Place - Suite 330, Boston, MA  02111-1307, USA 
 
Everyone is permitted to copy and distribute verbatim copies 
of this license document, but changing it is not allowed. 
 
PREAMBLE 
The licenses for most software are designed to take away your freedom to share and 
change it. By contrast, the GNU General Public License is intended to guarantee your 
freedom to share and change free software--to make sure the software is free for all its 
users. This General Public License applies to most of the Free Software Foundation's 
software and to any other program whose authors commit to using it. (Some other Free 
Software Foundation software is covered by the GNU Library General Public License 
instead). You can apply it to your programs, too.  

When we speak of free software, we are referring to freedom, not price. Our General 
Public Licenses are designed to make sure that you have the freedom to distribute copies 
of free software (and charge for this service if you wish), that you receive source code or 
can get it if you want it, that you can change the software or use pieces of it in new free 
programs; and that you know you can do these things.  

To protect your rights, we need to make restrictions that forbid anyone to deny you these 
rights or to ask you to surrender the rights. These restrictions translate to certain 
responsibilities for you if you distribute copies of the software, or if you modify it.  

For example, if you distribute copies of such a program, whether gratis or for a fee, you 
must give the recipients all the rights that you have. You must make sure that they, too, 
receive or can get the source code. And you must show them these terms so they know 
their rights.  

We protect your rights with two steps: (1) copyright the software, and (2) offer you this 
license which gives you legal permission to copy, distribute and/or modify the software.  

Also, for each author's protection and ours, we want to make certain that everyone 
understands that there is no warranty for this free software. If the software is modified by 
someone else and passed on, we want its recipients to know that what they have is not the 
original, so that any problems introduced by others will not reflect on the original authors' 
reputations.  

Finally, any free program is threatened constantly by software patents. We wish to avoid 
the danger that redistributors of a free program will individually obtain patent licenses, in 



 
 

113 

 

effect making the program proprietary. To prevent this, we have made it clear that any 
patent must be licensed for everyone's free use or not licensed at all.  

The precise terms and conditions for copying, distribution and modification follow.  

TERMS AND CONDITIONS FOR COPYING, 
DISTRIBUTION AND MODIFICATION 
0. This License applies to any program or other work which contains a notice placed by 
the copyright holder saying it may be distributed under the terms of this General Public 
License. The "Program", below, refers to any such program or work, and a "work based 
on the Program" means either the Program or any derivative work under copyright law: 
that is to say, a work containing the Program or a portion of it, either verbatim or with 
modifications and/or translated into another language. (Hereinafter, translation is included 
without limitation in the term "modification".) Each licensee is addressed as "you".  

Activities other than copying, distribution and modification are not covered by this 
License; they are outside its scope. The act of running the Program is not restricted, and 
the output from the Program is covered only if its contents constitute a work based on the 
Program (independent of having been made by running the Program.) Whether that is true 
depends on what the Program does.  

1. You may copy and distribute verbatim copies of the Program's source code as you 
receive it, in any medium, provided that you conspicuously and appropriately publish on 
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the 
notices that refer to this License and to the absence of any warranty; and give any other 
recipients of the Program a copy of this License along with the Program.  

You may charge a fee for the physical act of transferring a copy, and you may at your 
option offer warranty protection in exchange for a fee.  

2. You may modify your copy or copies of the Program or any portion of it, thus forming 
a work based on the Program, and copy and distribute such modifications or work under 
the terms of Section 1 above, provided that you also meet all of these conditions:  

a) You must cause the modified files to carry prominent notices stating that you changed 
the files and the date of any change.  

b) You must cause any work that you distribute or publish, that in whole or in part 
contains or is derived from the Program or any part thereof, to be licensed as a whole at 
no charge to all third parties under the terms of this License.  

c) If the modified program normally reads commands interactively when run, you must 
cause it, when started running for such interactive use in the most ordinary way, to print 
or display an announcement including an appropriate copyright notice and a notice that 
there is no warranty (or else, saying that you provide a warranty) and that users may 
redistribute the program under these conditions, and telling the user how to view a copy 



 
 

114 

 

of this License. (Exception: if the Program itself is interactive but does not normally print 
such an announcement, your work based on the Program is not required to print an 
announcement.)  
These requirements apply to the modified work as a whole. If identifiable sections of that 
work are not derived from the Program, and can be reasonably considered independent 
and separate works in themselves, then this License, and its terms, do not apply to those 
sections when you distribute them as separate works. But when you distribute the same 
sections as part of a whole which is a work based on the Program, the distribution of the 
whole must be on the terms of this License, whose permissions for other licensees extend 
to the entire whole, and thus to each and every part regardless of who wrote it.  
Thus, it is not the intent of this section to claim rights or contest your rights to work 
written entirely by you; rather, the intent is to exercise the right to control the distribution 
of derivative or collective works based on the Program.  

In addition, mere aggregation of another work not based on the Program with the Program 
(or with a work based on the Program) on a volume of a storage or distribution medium 
does not bring the other work under the scope of this License.  

3. You may copy and distribute the Program (or a work based on it, under Section 2) in 
object code or executable form under the terms of Sections 1 and 2 above provided that 
you also do one of the following:  

a) Accompany it with the complete corresponding machine-readable source code, which 
must be distributed under the terms of Sections 1 and 2 above on a medium customarily 
used for software interchange; or,  

b) Accompany it with a written offer, valid for at least three years, to give any third party, 
for a charge no more than your cost of physically performing source distribution, a 
complete machine-readable copy of the corresponding source code, to be distributed 
under the terms of Sections 1 and 2 above on a medium customarily used for software 
interchange; or,  

c) Accompany it with the information you received as to the offer to distribute 
corresponding source code. (This alternative is allowed only for noncommercial 
distribution and only if you received the program in object code or executable form with 
such an offer, in accord with Subsection b above.)  
The source code for a work means the preferred form of the work for making 
modifications to it. For an executable work, complete source code means all the source 
code for all modules it contains, plus any associated interface definition files, plus the 
scripts used to control compilation and installation of the executable. However, as a 
special exception, the source code distributed need not include anything that is normally 
distributed (in either source or binary form) with the major components (compiler, kernel, 
and so on) of the operating system on which the executable runs, unless that component 
itself accompanies the executable.  



 
 

115 

 

If distribution of executable or object code is made by offering access to copy from a 
designated place, then offering equivalent access to copy the source code from the same 
place counts as distribution of the source code, even though third parties are not 
compelled to copy the source along with the object code.  

4. You may not copy, modify, sublicense, or distribute the Program except as expressly 
provided under this License. Any attempt otherwise to copy, modify, sublicense or 
distribute the Program is void, and will automatically terminate your rights under this 
License. However, parties who have received copies, or rights, from you under this 
License will not have their licenses terminated so long as such parties remain in full 
compliance.  

5. You are not required to accept this License, since you have not signed it. However, 
nothing else grants you permission to modify or distribute the Program or its derivative 
works. These actions are prohibited by law if you do not accept this License. Therefore, 
by modifying or distributing the Program (or any work based on the Program), you 
indicate your acceptance of this License to do so, and all its terms and conditions for 
copying, distributing or modifying the Program or works based on it.  

6. Each time you redistribute the Program (or any work based on the Program), the 
recipient automatically receives a license from the original licensor to copy, distribute or 
modify the Program subject to these terms and conditions. You may not impose any 
further restrictions on the recipients' exercise of the rights granted herein. You are not 
responsible for enforcing compliance by third parties to this License.  

7. If, as a consequence of a court judgment or allegation of patent infringement or for any 
other reason (not limited to patent issues), conditions are imposed on you (whether by 
court order, agreement or otherwise) that contradict the conditions of this License, they 
do not excuse you from the conditions of this License. If you cannot distribute so as to 
satisfy simultaneously your obligations under this License and any other pertinent 
obligations, then as a consequence you may not distribute the Program at all. For 
example, if a patent license would not permit royalty-free redistribution of the Program 
by all those who receive copies directly or indirectly through you, then the only way you 
could satisfy both it and this License would be to refrain entirely from distribution of the 
Program.  

If any portion of this section is held invalid or unenforceable under any particular 
circumstance, the balance of the section is intended to apply and the section as a whole is 
intended to apply in other circumstances.  

It is not the purpose of this section to induce you to infringe any patents or other property 
right claims or to contest validity of any such claims; this section has the sole purpose of 
protecting the integrity of the free software distribution system, which is implemented by 
public license practices. Many people have made generous contributions to the wide 
range of software distributed through that system in reliance on consistent application of 



 
 

116 

 

that system; it is up to the author/donor to decide if he or she is willing to distribute 
software through any other system and a licensee cannot impose that choice.  

This section is intended to make thoroughly clear what is believed to be a consequence of 
the rest of this License.  

8. If the distribution and/or use of the Program is restricted in certain countries either by 
patents or by copyrighted interfaces, the original copyright holder who places the 
Program under this License may add an explicit geographical distribution limitation 
excluding those countries, so that distribution is permitted only in or among countries not 
thus excluded. In such case, this License incorporates the limitation as if written in the 
body of this License.  

9. The Free Software Foundation may publish revised and/or new versions of the General 
Public License from time to time. Such new versions will be similar in spirit to the 
present version, but may differ in detail to address new problems or concerns.  

Each version is given a distinguishing version number. If the Program specifies a version 
number of this License which applies to it and "any later version", you have the option of 
following the terms and conditions either of that version or of any later version published 
by the Free Software Foundation. If the Program does not specify a version number of 
this License, you may choose any version ever published by the Free Software 
Foundation.  

10. If you wish to incorporate parts of the Program into other free programs whose 
distribution conditions are different, write to the author to ask for permission. For 
software which is copyrighted by the Free Software Foundation, write to the Free 
Software Foundation; we sometimes make exceptions for this. Our decision will be 
guided by the two goals of preserving the free status of all derivatives of our free software 
and of promoting the sharing and reuse of software generally.  

NO WARRANTY 
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE 
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM 
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE 
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS 
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE 
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.  

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO 
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO 
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED 



 
 

117 

 

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, 
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT 
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR 
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE 
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH 
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES.  

END OF TERMS AND CONDITIONS 
 
 
Source URL:http://www.fsf.org/copyleft/gpl.html 



 
 

118 

 

Appendix B - The Open Source Definition 

 
Version 1.9 
The indented, italicized sections below appear as annotations to the Open Source Definition (OSD) and are 
not a part of the OSD. 
 

Introduction 
 
Open source doesn't just mean access to the source code. The distribution terms of open-
source software must comply with the following criteria: 
 
1. Free Redistribution 
The license shall not restrict any party from selling or giving away the software as a 
component of an aggregate software distribution containing programs from several 
different sources. The license shall not require a royalty or other fee for such sale. 
 
Rationale: By constraining the license to require free redistribution, we eliminate the temptation to throw 
away many long-term gains in order to make a few short-term sales dollars. If we didn't do this, there 
would be lots of pressure for cooperators to defect. 
 
2. Source Code 
The program must include source code, and must allow distribution in source code as well 
as compiled form. Where some form of a product is not distributed with source code, 
there must be a well-publicized means of obtaining the source code for no more than a 
reasonable reproduction cost–preferably, downloading via the Internet without charge. 
The source code must be the preferred form in which a programmer would modify the 
program. Deliberately obfuscated source code is not allowed. Intermediate forms such as 
the output of a preprocessor or translator are not allowed. 
 
Rationale: We require access to un-obfuscated source code because you can't evolve programs without 
modifying them. Since our purpose is to make evolution easy, we require that modification be made easy. 
 
3. Derived Works 
The license must allow modifications and derived works, and must allow them to be 
distributed under the same terms as the license of the original software. 
 
Rationale: The mere ability to read source isn't enough to support independent peer review and rapid 
evolutionary selection. For rapid evolution to happen, people need to be able to experiment with and 
redistribute modifications. 
 
4. Integrity of The Author's Source Code 
The license may restrict source-code from being distributed in modified form only if the 
license allows the distribution of "patch files" with the source code for the purpose of 
modifying the program at build time. The license must explicitly permit distribution of 



 
 

119 

 

software built from modified source code. The license may require derived works to carry 
a different name or version number from the original software. 
Rationale: Encouraging lots of improvement is a good thing, but users have a right to know who is 
responsible for the software they are using. Authors and maintainers have reciprocal right to know what 
they're being asked to support and protect their reputations. 
Accordingly, an open-source license must guarantee that source be readily available, but may require that 
it be distributed as pristine base sources plus patches. In this way, "unofficial" changes can be made 
available but readily distinguished from the base source. 
 
5. No Discrimination Against Persons or Groups 
The license must not discriminate against any person or group of persons. 
 
Rationale: In order to get the maximum benefit from the process, the maximum diversity of persons and 
groups should be equally eligible to contribute to open sources. Therefore we forbid any open-source 
license from locking anybody out of the process. 
Some countries, including the United States, have export restrictions for certain types of software. An OSD-
conformant license may warn licensees of applicable restrictions and remind them that they are obliged to 
obey the law; however, it may not incorporate such restrictions itself. 
 
6. No Discrimination Against Fields of Endeavor 
The license must not restrict anyone from making use of the program in a specific field of 
endeavor. For example, it may not restrict the program from being used in a business, or 
from being used for genetic research. 
 
Rationale: The major intention of this clause is to prohibit license traps that prevent open source from 
being used commercially. We want commercial users to join our community, not feel excluded from it. 
 
7. Distribution of License 
The rights attached to the program must apply to all to whom the program is redistributed 
without the need for execution of an additional license by those parties. 
 
Rationale: This clause is intended to forbid closing up software by indirect means such as requiring a non-
disclosure agreement. 
 
8. License Must Not Be Specific to a Product 
The rights attached to the program must not depend on the program's being part of a 
particular software distribution. If the program is extracted from that distribution and used 
or distributed within the terms of the program's license, all parties to whom the program is 
redistributed should have the same rights as those that are granted in conjunction with the 
original software distribution. 
 
Rationale: This clause forecloses yet another class of license traps. 
 
9. The License Must Not Restrict Other Software 
The license must not place restrictions on other software that is distributed along with the 
licensed software. For example, the license must not insist that all other programs 
distributed on the same medium must be open-source software. 
 



 
 

120 

 

Rationale: Distributors of open-source software have the right to make their own choices about their own 
software. 
Yes, the GPL is conformant with this requirement. Software linked with GPLed libraries only inherits the 
GPL if it forms a single work, not any software with which they are merely distributed. 
 
*10. The License must be technology-neutral 
No provision of the license may be predicated on any individual technology or style of 
interface. 
 
Rationale: This provision is aimed specifically at licenses which require an explicit gesture of assent in 
order to establish a contract between licensor and licensee. Provisions mandating so-called "click-wrap" 
may conflict with important methods of software distribution such as FTP download, CD-ROM 
anthologies, and web mirroring; such provisions may also hinder code re-use. Conformant licenses must 
allow for the possibility that (a) redistribution of the software will take place over non-Web channels that 
do not support click-wrapping of the download, and that (b) the covered code (or re-used portions of 
covered code) may run in a non-GUI environment that cannot support popup dialogues.  
 
 
 

Source URL: http://www.opensource.org/docs/definition.phpAppendix  



 
 

121 

 

Appendix C - Linus Introduces Linux 

 
This appendix presents two “historic” newsgroup postings from Linus Torvalds, 

the creator of the Linux operating system.  Note that the grammar, punctuation and 

spelling have not been altered and remain as retrieved from the source URL.  It is implied 

by the source that these are the original messages in their original format. (Hasan, 2002) 

On August 25, 1991 Linus Torvalds posted the following message to the MINIX 

news group (comp.os.minix), many see this as the “birth” of the Linux operating system. 

 
 
From:  torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds) 
Newsgroups:  comp.os.minix 
Subject:  What would you like to see most in minix? 
Summary:  small poll for my new operating system 
Message-ID:  <1991Aug25.205708.9541@klaava.Helsinki.FI> 
Date:  25 Aug 91 20:57:08 GMT 
Organization:  University of Helsinki 
 
Hello everybody out there using minix - 
I'm doing a (free) operating system (just a hobby, won't be big 
and professional like gnu) for 386(486) AT clones. This has been 
brewing since april, and is starting to get ready. I'd like any 
feedback on things people like/dislike in minix, as my OS 
resembles it somewhat(same physical layout of the file-system 
(due to practical reasons)among other things). I've currently 
ported bash(1.08) and gcc(1.40), and things seem to work. This 
implies that I'll get something practical within a few months, 
and I'd like to know what features most people would want. Any 
suggestions are welcome, but I won't promise I'll implement them 
:-) 
 
Linus (torvalds@kruuna.helsinki.fi) 
 
PS. Yes - it's free of any minix code, and it has a multi-
threaded fs. It is NOT protable (uses 386 task switching etc), 
and it probably never will support anything other than AT-
harddisks, as that's all I have :-(. 



 
 

122 

 

Linus released Linux, version 0.01, in September 1991.  After some enthusiastic 

collaboration with other programmers via the Internet, version 0.02 was released on 

October 5th with the following newsgroup posting: 

 
From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds) 
Newsgroups: comp.os.minix 
Subject: Free minix-like kernel sources for 386-AT 
Message-ID: <1991Oct5.054106.4647@klaava.Helsinki.FI> 
Date: 5 Oct 91 05:41:06 GMT 
Organization: University of Helsinki 

Do you pine for the nice days of minix-1.1, when men were men and 
wrote their own device drivers? Are you without a nice project 
and just dying to cut your teeth on a OS you can try to modify 
for your needs? Are you finding it frustrating when everything 
works on minix? No more all-nighters to get a nifty program 
working? Then this post might be just for you :-) 

As I mentioned a month(?) ago, I'm working on a free version of a 
minix-lookalike for AT-386 computers. It has finally reached the 
stage where it's even usable (though may not be depending on what 
you want), and I am willing to put out the sources for wider 
distribution. It is just version 0.02 (+1 (very small) patch 
already), but I've successfully run bash/gcc/gnu-make/gnu-
sed/compress etc under it. 

Sources for this pet project of mine can be found at nic.funet.fi 
(128.214.6.100) in the directory /pub/OS/Linux. The directory 
also contains some README-file and a couple of binaries to work 
under linux (bash, update and gcc, what more can you ask for :-). 
Full kernel source is provided, as no minix code has been used. 
Library sources are only partially free, so that cannot be 
distributed currently. The system is able to compile "as-is" and 
has been known to work. Heh. Sources to the binaries (bash and 
gcc) can be found at the same place in /pub/gnu. 

 
 
Source URL: 
http://ragib.hypermart.net/linux/#In%20The%20Beginning 
 



 
 

123 

 

Appendix D - Examples of Free/Open Source Software 

 
As of May 18, 2004 there were 3,153 free software packages indexed in the 

complete directory located at:  http://www.gnu.org/directory 

Some of the programs in this listing are not GNU applications, but do use one of 

the licenses approved by the Open Source Initiative: http://www.opensource.org/licenses 

 
Program 
category Description License 

Database MySQL – a Relational database management 
system that supports the standardized Structured 
Query Language. 

GPL / Dual License 

 PostgreSQL – an Object-Relational DBMS BSD License 
Graphics The GIMP – The GNU Image Manipulation 

Program is a photo retouching and graphics-
authoring program. 

GPL 

 ImageMagick - Image display and manipulation 
program. 

Freely Redistributable  
License 

Productivity Gnucash - Personal and small business money-
management software. GPL 

 Evolution - GNOME mail client, calendar, 
contact manager, and PIM. GPL 

 KOffice – an integrated office productivity 
suite, that includes a word processor, 
spreadsheet, presentation and drawing 
applications and several other advanced 
programs. Native to the KDE desktop 
environment. 

GPL 

 Gnumeric - Math and spreadsheet program 
feature compatible with commercial 
applications. 

GPL 

 OpenOffice.org – a multi-platform office 
productivity suite providing a word processor, 
spreadsheet, presentation manager, and drawing 
program. 

GPL / Dual License 



 
 

124 

 

Program 
category Description License 

Internet Apache – an HTTP/1.1 compliant web server Apache Software 
License 

 Mozilla - a graphical web browser that is being 
developed by volunteers with the cooperation 
and support of Netscape. 

Netscape Public 
License (NPL) or the 

Mozilla Public License 
(MPL) 

Programming GCC - The GNU Compiler Collection is a full-
featured ANSI C compiler supporting C, C++, 
Java, and Fortran. 

GPL 

 Python - an interpreted, object-oriented 
programming language. 

Python 
License, 

compatible 
with the 

GPL 

 Perl - a high-level, general-purpose scripting 
language. The Artistic license 

 PHP - a general-purpose scripting language that 
is especially suited for Web development and 
can be embedded into HTML. In many ways 
like Microsoft's Active Server Pages (ASP). 

The PHP License 

Editors AbiWord - Word processor from the AbiSource 
Project desktop suite. GPL 

 Emacs - Emacs is the extensible, customizable, 
self-documenting real-time display editor. GPL 

 Bluefish - an HTML editor with support for 
many scripting languages. GPL 

System Linux - a UNIX-like operating system, which is 
properly named "GNU/Linux”. GPL 

 FreeBSD - a multi-platform operating system 
derived from BSD UNIX developed at the 
University of California, Berkeley. 

 

 SAMBA – SMB file-sharing implementation for 
Windows, OS/2, NFS, or Netware servers. GPL 



 
 

125 

 

Program 
category Description License 

Utility Info-Zip (UnZip and Zip) – Compression 
utilities whose code has been used in other 
programs, such as Pretty Good Privacy (PGP) 
and WinZip. 

A Modified BSD 
License 

 
 
Sources: 
 
FSF/UNESCO Free Software Directory:  Boston, MA; Retrieved on August 30, 2003 
from: 
http://www.gnu.org/directory/ 
 
Info-Zip; Retrieved on April 29, 2003 from: 
http://www.info-zip.org/pub/infozip/ 
 
Linux is a Registered Trademark of Linus Torvalds



 
 

126 

 

Appendix E - SCO Group letter to IBM 

 
The SCO Group, which claims ownership of the UNIX operating system’s 

intellectual properties, purportedly sent the following letter to all of its Linux customers.  

At one time it was available for public viewing on the SCO website 

(http://www.sco.com/scosource/letter_to_linux_customers.html), but has since been 

removed.  The letter shown here is addressed to IBM, whom the SCO Group actually 

sued. 

 
May 12. 2003 
 
 
Mr. Lucio A. Noto 
Audit Committee Chair 
International Business Machines Corporation 
New Orchard Road 
Armonk, NY 10504 
 
 
 
Dear Lucio: 
 
SCO holds the rights to the UNIX operating system software originally licensed by AT&T to 
approximately 6,000 companies and institutions worldwide (the "UNIX Licenses"). The vast 
majority of UNIX software used in enterprise applications today is a derivative work of the 
software originally distributed under our UNIX Licenses. Like you, we have an obligation to our 
shareholders to protect our intellectual property and other valuable rights. 
 
In recent years, a UNIX-like operating system has emerged and has been distributed in the 
enterprise marketplace by various software vendors. This system is called Linux. We believe that 
Linux is, in material part, an unauthorized derivative of UNIX. 
 
As you may know, the development process for Linux has differed substantially from the 
development process for other enterprise operating systems. Commercial software is built by 
carefully selected and screened teams of programmers working to build proprietary, secure 
software. This process is designed to monitor the security and ownership of intellectual property 
rights associated with the code. 
 
By contrast, much of Linux has been built from contributions by numerous unrelated and 
unknown software developers, each contributing a small section of code. There is no mechanism 
inherent in the Linux development process to assure that intellectual property rights, 



 
 

127 

 

confidentiality or security are protected. The Linux process does not prevent inclusion of code 
that has been stolen outright; or developed by improper use of proprietary methods and concepts. 
 
Many Linux contributors were originally UNIX developers who had access to UNIX source code 
distributed by AT&T and were subject to confidentiality agreements, including confidentiality of 
the methods and concepts involved in software design. We have evidence that portions of UNIX 
System V software code have been copied into Linux and that additional other portions of UNIX 
System V software code have been modified and copied into Linux, seemingly for the purposes of 
obfuscating their original source. 
 
As a consequence of Linux's unrestricted authoring process, it is not surprising that Linux 
distributors do not warrant the legal integrity of the Linux code provided to customers. Therefore 
legal liability that may arise from the Linux developments process may also rest with the end user. 
 
We believe that Linux infringes on our UNIX intellectual property and other rights. We intend to 
aggressively protect and enforce these rights. Consistent with this effort, on March 7, we initiated 
legal action against IBM for alleged unfair competition and breach of contract with respect to our 
UNIX rights. This case is pending in Utah Federal District Court. As you are aware, this case has 
been widely reported and commented upon in the press. If you would like additional information, 
a copy of the complaint and response may be viewed at our web site at www.sco.com/scosource. 
 
For the reasons explained above, we have also announced the suspension of our own Linux-
related activities until the issues surrounding Linux intellectual property and the attendant risks 
are better understood and properly resolved. 
 
Similar to analogous efforts underway in the music industry, we are prepared to take all actions 
necessary to stop the ongoing violation of our intellectual property or other rights. 
 
SCO's actions may prove unpopular with those who wish to advance or otherwise benefit from 
Linux as a free software system for use in enterprise applications. However, our property and 
contract rights are important and valuable: not only to us, but to every individual and every 
company whose livelihood depends on the continued viability of intellectual and intangible 
property rights in a digital age. 
 
 
Yours truly, 
 
 
THE SCO GROUP 
 
By: Darl McBride 
President and CEO  
 

 
Source URL:http://www.groklaw.net/article.php?story=20031127100124265 



 
 

128 

 

Appendix F - Homogenous SWOT model of Free/Open Source Software 
 
Software Strengths 
• Inexpensive or free software – no license fee. 
• F/OSS is freely distributable, no penalty for making copies. 
• No license management or license related legal risks. 
• Less dependence on a specific product or vendor. 
• Increased competition within software markets reduce costs and increase quality. 
• Increased security - source code can be verified and certified. 
• Open standards and formats reduce incompatibilities. 
• Modular, customizable software, users choose modules and can customize to suit. 
• Evolving software, user supported and user driven. 
• Rapid release rate; fixes, patches and new versions updated frequently. 
• Parallel debugging/development. 
• 24 x 7 technical support via the Internet (newsgroups, mailing lists, etc.). 
• Software viability un affected by vendor’s business condition. 
• Not bound to the strategic decisions of a vendor. 
• Quality of support increases while the end-user cost of support decreases. 
• Immense programming expertise. 
• Large independent distribution base. 
• Corporate support for development, distribution and consultancy services. 
• Code re-use reduces development time and provides predictable results 

Weaknesses 
• Potential need for extensive migration to replace proprietary systems. 
• May require in-house development skills and maintenance within the 

enterprise. 
• Product selection could be difficult (no marketing departments). 
• Possible interoperability problems with proprietary software formats or 

standards 
• No brand name to use as a guarantee. 
• Resistance among decision makers, IT personnel and end-users (Fear of 

Change). 
• F/OSS licenses do not permit ownership. 
• More highly educated or skilled administrators needed to maintain 

F/OSS. 
• No GUI or weak GUIs are the norm as many F/OSS programmers prefer 

command line interfaces. 
• Risk of code forking, which ultimately produces different version of the 

same product and thus demands a decision on which “fork” to accept. 
 

 

Opportunities 
• Easy entry into software markets with an existing dominate product or vendor. 
• “Going Open” gives vendors the ability to dramatically increase the developer base 

of existing closed source programs. 
• Closed source software that is released to the F/OSS community gains support of 

not only developers, but end-users and independent vendors. 
• Governments require sizeable software installations on limited budgets 
• Opportunities are greater with poorer governments (Third World) with developing 

school systems and agencies, Proprietary or COTS license fees are not within any 
budget. 

 

Threats 
• Disinterest in a specific project can stall or end active development. 
• Initiation of new F/OSS projects may appropriate existing project 

participants and stall or end active development. 
• Hybrid open-source projects that build on true F/OSS and are released as 

commercial ventures. 
• Organized FUD (Fear, Uncertainty and Doubt) marketing campaigns by 

commercial software companies with “unlimited” budgets. 
• Lawsuits involving “borrowed” code (e.g. SCO) or vague software 

patents. 
• Governmental or enterprise security requirements (or certification). 
• Version control amongst integrated or compatible programs cannot 

always be assured. 
• Customized F/OSS programs can fragment or fork the existing project. 



 
 

129 

 

Appendix G - Excel Workbook Formulas used in the Total Cost Model 

 

Formula references to “System_1” refer to the value of system 1 as defined on the Common Data worksheet.  Formulas 

for each system use the named ranges, System_1, System_2 and System_3 respectively.  All functions used in the following 

formulas are standard Excel functions with the exception of the two custom Payback Period functions listed below (written by 

the author and displayed as function signatures with comments): 

• SPayBack (CumFlow As Range, NetFlow As Range, period As Integer) As Variant - takes the required arguments and 

returns the SIMPLE Payback Period in years 

• DPayBack (CumFlow As Range, NetFlow As Range, drate As Double, period As Integer) As Variant - takes the 

required arguments of Discounted cashflows and returns the DISCOUNTED Payback Period in years 

Metric Spreadsheet Formula (Excel 2003) 

Total Cost of Ownership (TCO) =IF(ISBLANK(System_1),"",IF($C$10<0,ABS($C$10),"N/A")) 

Simple Return on Investment 
(ROI) 

=IF(ISBLANK(System_1),"",IF(AND(OR(Period={1,3,4,5}),ISNUMBER(( 
SUM($C$14:OFFSET($C$14,0,0,1,Period))+SUM($C$13:OFFSET($C$13,0,0,1, 
Period)))/ABS(SUM($C$13:OFFSET($C$13,0,0,1,Period))))),(SUM($C$14:OFFSE
T($C$14,0,0,1,Period))+SUM($C$13:OFFSET($C$13,0,0,1,Period))) 
/ABS(SUM($C$13:OFFSET($C$13,0,0,1,Period))),"N/A")) 



 
 

130 

 

Metric Spreadsheet Formula (Excel 2003) 

Discounted Return on Investment 
(ROI) 

=IF(ISBLANK(System_1),"",IF(AND(OR(Period={1,3,4,5}),ISNUMBER(( 
SUM($M$12:OFFSET($M$12,0,0,Period,1))+SUM($M$21:OFFSET($M$21,0,0, 
Period,1)))/ABS(SUM($M$21:OFFSET($M$21,0,0,Period,1))))), 
(SUM($M$12:OFFSET($M$12,0,0,Period,1))+SUM($M$21:OFFSET($M$21,0,0, 
Period,1)))/ABS(SUM($M$21:OFFSET($M$21,0,0,Period,1))),"N/A")) 

Payback Period =IF(ISBLANK(System_1),"",IF($H$13=0,"N/A",SPayBack($C$15:$G$15,$C$16:$
G$16,Period))) 

Discounted Payback Period (years) =IF(ISBLANK(System_1),"",IF($H$13=0,"N/A",DPayBack($M$30:$M$34,$M$39: 
$M$43,Cost_of_Capital,Period))) 

Internal Rate of Return (IRR) =IF(ISBLANK(System_1),"",IF(AND(OR(Period={1,3,4,5}),ISNUMBER(IRR 
(OFFSET($M$46,0,0,Period,1),-0.9))), IRR(OFFSET($M$46,0,0,Period,1),- 0.9), 
"N/A")) 

Modified Internal Rate of Return 
(MIRR) 

=IF(ISBLANK(System_1),"",IF(AND(OR(Period={1,3,4,5}),ISNUMBER( 
MIRR(OFFSET($M$46,0,0,Period,1),Reinvest_Rate,Cost_of_Capital))),MIRR(OFF
SET($M$46,0,0,Period,1),Reinvest_Rate,Cost_of_Capital),"N/A")) 

Net Present Value (NPV) =IF(ISBLANK(System_1),"",IF($H$13=0,"N/A",IF(AND(OR(Period={1,3,4,5}), 
ISNUMBER(NPV(Cost_of_Capital,(OFFSET($M$46,0,0,Period,1))))), 
(NPV(Cost_of_Capital,(OFFSET($M$46,0,0,Period,1)))*(1+Cost_of_Capital)),"N/A
"))) 

NPV - Sum of Discounted Net 
Cash flows =IF(ISBLANK(System_1),"",IF($H$13=0,"N/A",SUM($M$39:$M$43))) 



 
 

131 

 

Metric Spreadsheet Formula (Excel 2003) 

Profitability Index (PI) =IF(ISBLANK(System_1),"",IF(AND(OR(Period={1,3,4,5}),ISNUMBER(( 
SUM($M$12:OFFSET($M$12,0,0,Period,1))/(-1*SUM($M$21:OFFSET($M$21,0,0
,Period,1)))))),(SUM($M$12:OFFSET($M$12,0,0,Period,1))/(-
1*SUM($M$21:OFFSET($M$21,0,0,Period,1)))),"N/A")) 

 



 
 

132 

 

Appendix H - Visual Basic for Applications programming examples 

 

The first code example is triggered to run when a particular cell’s value is changed.  The cell address is trapped by the 

Select Case statements and the code specific to that case is initiated.  This event procedure is shown as it displays various VBA 

functions, Excel functions and the use of custom programmed functions (such as Hide_years and Refresh_Charts). 

The second code example is of the DPayBack custom function.  This function calculates the discounted Payback period 

and returns that value, or “N/A” as its result. 

 
Private Sub Worksheet_Change(ByVal Target As Range) 
'   this sub will change the name of the alternative system worksheets 
'   or add or delete their respective sheets as needed 
 
On Error Resume Next 
 
Dim intErrorCount As Integer    '   a counter for the errHandler 
 
Application.EnableEvents = False    '   turn OFF event tracking 
Application.DisplayAlerts = False   '   hide any error or confirmation messages 
Application.ScreenUpdating = False  '   turn OFF screen updates or refreshes 
 
    Select Case Target.Address '    these addresses must be absolute addresses 
 
    Case "$D$3" '   the Period has changed! 
         '   hide the system year columns based on the value of Period 
        Call Hide_years(Sheet_1.Range("Period")) 
        Call Refresh_Charts(Sheet_1.Range("Period")) 
 
    Case "$D$8", "$D$9" '   The "Projected Yearly Growth Rate" value if this changes we alter the 
formulas 



 
 

133 

 

        If Not IsEmpty(Sheet_1.Range("D8").Value) And Sheet_1.Range("D9").Value > 0 Then 
            Sheet_1.Range("Total_Year_2").Formula = 
"=IF(Period>=3,IF(Growth_Rate>0,IF(Total_Year_1>0,(Total_Year_1*(1+Growth_Rate)),0),Total_Year_1),""N/
A"")" 
            Sheet_1.Range("Total_Year_3").Formula = 
"=IF(Period>=3,IF(Growth_Rate>0,IF(Total_Year_1>0,(Total_Year_2*(1+Growth_Rate)),0),Total_Year_1),""N/
A"")" 
            Sheet_1.Range("Total_Year_4").Formula = 
"=IF(Period>3,IF(Growth_Rate>0,IF(Total_Year_1>0,(Total_Year_3*(1+Growth_Rate)),0),Total_Year_1),""N/A
"")" 
            Sheet_1.Range("Total_Year_5").Formula = 
"=IF(Period>4,IF(Growth_Rate>0,IF(Total_Year_1>0,(Total_Year_4*(1+Growth_Rate)),0),Total_Year_1),""N/A
"")" 
        Else 
            Sheet_1.Range("Total_Year_2").Formula = "0" 
            Sheet_1.Range("Total_Year_3").Formula = "0" 
            If Sheet_1.Range("Period").Value > 3 Then 
                Sheet_1.Range("Total_Year_4").Formula = "0" 
            Else 
                Sheet_1.Range("Total_Year_4").Formula = "N/A" 
            End If 
            If Sheet_1.Range("Period").Value > 4 Then 
                Sheet_1.Range("Total_Year_5").Formula = "0" 
            Else 
                Sheet_1.Range("Total_Year_5").Formula = "N/A" 
            End If 
        End If 
                
    Case "$B$16"    '    System 1 
        If Sheet_1.Range("B16").Value <> "" Then 
            Worksheets(2).Visible = True 
            Worksheets(2).Name = Sheet_1.Range("B16").Value & " - System 1" 
            ThisWorkbook.CustomDocumentProperties.Item("System_1").Value = Worksheets(2).Name 
            Sheet_1.Range("C16").Activate 
            Sheet_1.Range("C16").Select 
        Else 
            If Sheet_1.Range("C16").Value <> "" Then 
                MsgBox "Please enter a name for the FIRST Proposed System!", vbOKOnly, "First system 
not defined!" 
                Application.Undo 



 
 

134 

 

            ElseIf Worksheets(2).Visible = True Then 
                '   do you really want to close the sheet and rest the data to ZERO? 
                If MsgBox("Do you want to close the System 1 worksheet and RESET all of it's data?", _ 
                vbYesNo, "Close the System 1 worksheet?") = vbYes Then 
                    Worksheets(2).Name = "System_1" 
                    '   call the reset function here! 
                    Call Reset_Systems(2) 
                    Call Refresh_Charts(Sheet_1.Range("Period")) 
                    Worksheets(2).Visible = False 
                    ThisWorkbook.CustomDocumentProperties.Item("System_1").Value = 
Sheet_1.Range("B16").Value 
                Else ' put the name back in the cell 
                    Application.Undo 
                End If 
            End If 
             
            Sheet_1.Range("B16").Activate 
            Sheet_1.Range("B16").Select 
        End If 
         
    Case "$C$16"    '    System 2 
     
        ' if there isn't a value in the first cell 
        If Sheet_1.Range("B16").Value = "" Then 
            MsgBox "Please enter a name for the FIRST Proposed System!", vbOKOnly, "First system not 
defined!" 
            Sheet_1.Range("C16").Value = "" 
            Sheet_1.Range("B16").Activate 
            Sheet_1.Range("B16").Select 
        ElseIf Sheet_1.Range("C16").Value <> "" Then 
            Worksheets(3).Visible = True 
            Worksheets(3).Name = Sheet_1.Range("C16").Value & " - System 2" 
            ThisWorkbook.CustomDocumentProperties.Item("System_2").Value = Worksheets(3).Name 
            Sheet_1.Range("D16").Activate 
            Sheet_1.Range("D16").Select 
        ElseIf Sheet_1.Range("C16").Value = "" Then 
            If Worksheets(3).Visible = True Then 
             '   do you really want to close the sheet and rest the data to ZERO? 
                If MsgBox("Do you want to close the System 2 worksheet and RESET all of it's data?", _ 
                vbYesNo, "Close the System 2 worksheet?") = vbYes Then 



 
 

135 

 

                    Worksheets(3).Name = "System_2" 
                    '   call the reset function here! 
                    Call Reset_Systems(3) 
                    Call Refresh_Charts(Sheet_1.Range("Period")) 
                    Worksheets("System_2").Visible = False 
                    ThisWorkbook.CustomDocumentProperties.Item("System_2").Value = 
Sheet_1.Range("C16").Value 
                Else ' put the name back in the cell 
                    Application.Undo 
                End If 
         
                Sheet_1.Range("C16").Activate 
                Sheet_1.Range("C16").Select 
            End If 
        End If 
         
    Case "$D$16"    '    System 3 
     
        If Sheet_1.Range("B16").Value = "" Then  ' if there isn't a value in the first cell 
            MsgBox "Please enter a name for the FIRST Proposed System!", vbOKOnly, "Second system not 
defined!" 
            Sheet_1.Range("D16").Value = "" 
            Sheet_1.Range("B16").Activate 
            Sheet_1.Range("B16").Select 
        ElseIf Sheet_1.Range("C16").Value = "" Then   ' if there isn't a value in the second cell 
            MsgBox "Please enter a name for the SECOND Proposed System!", vbOKOnly, "Second system not 
defined!" 
            Sheet_1.Range("D16").Value = "" 
            Sheet_1.Range("C16").Activate 
            Sheet_1.Range("C16").Select 
        ElseIf Sheet_1.Range("D16").Value <> "" Then 
            Worksheets(4).Visible = True 
            Worksheets(4).Name = Sheet_1.Range("D16").Value & " - System 3" 
            ThisWorkbook.CustomDocumentProperties.Item(3).Value= Worksheets(4).Name 
            Sheet_1.Range("D16").Activate 
            Sheet_1.Range("D16").Select 
        ElseIf Sheet_1.Range("D16").Value = "" Then 
            If Worksheets(3).Visible = True Then 
             '   do you really want to close the sheet and rest the data to ZERO? 
                If MsgBox("Do you want to close the System 3 worksheet and RESET all of it's data?", _ 



 
 

136 

 

                vbYesNo, "Close the System 3 worksheet?") = vbYes Then 
                    Worksheets(4).Name = "System_3" 
                    '   call the reset function here! 
                    Call Reset_Systems(4) 
                    Call Refresh_Charts(Sheet_1.Range("Period")) 
                    Worksheets("System_3").Visible = False 
                    ThisWorkbook.CustomDocumentProperties.Item("System_3").Value= 
Sheet_1.Range("D16").Value 
                Else ' put the name back in the cell 
                    Application.Undo 
                End If 
                Sheet_1.Range("D16").Activate 
                Sheet_1.Range("D16").Select 
            End If 
        End If 
         
    End Select 
 
    Application.ScreenUpdating = True   ' turn back on screen updates or refreshes 
    Application.DisplayAlerts = True    ' turn back on any error or confirmation messages 
    Application.EnableEvents = True     ' turn back on event tracking 
     
End Sub 
 

 



 
 

137 

 

The next code example is of the DPayBack custom function.  This function calculates the discounted Payback period 

and returns it, or “N/A” as its result. 

 

 
Public Function DPayBack(CumFlow As Range, NetFlow As Range, drate As Double, period As Integer) As 
Variant 
'   take the required arguments of Discounted cashflows and return the DISCOUNTED Payback Period in 
years 
 
Application.Volatile True 
 
If CumFlow(1) > 0 Then 
    DPayBack = 1 
ElseIf CumFlow(2) > 0 And period > 1 Then 
    DPayBack = 1 + (Abs(CumFlow(1)) / NetFlow(2)) 
ElseIf CumFlow(3) > 0 And period > 1 Then 
    DPayBack = 2 + (Abs(CumFlow(2)) / NetFlow(3)) 
ElseIf CumFlow(4) > 0 And period >= 4 Then 
    DPayBack = 3 + (Abs(CumFlow(3)) / NetFlow(4)) 
ElseIf CumFlow(5) > 0 And period = 5 Then 
    DPayBack = 4 + (Abs(CumFlow(4)) / NetFlow(5)) 
Else 
    DPayBack = "N/A" 
End If 
 
End Function 



 
 

138 

 

References 

 
Anonymous[1]; 1992; Preparing Financial Models; American Institute of Certified 
Public Accountants, Inc.; New York, New York 
 
Anonymous[2]; 2002; Linux vs. Windows Total Cost of Ownership Comparison; 
Cybersource Pty, Ltd.; retrieved from the Internet on 10/6/2003 from:   
http://www.cyber.com.au/cyber/about/linux_vs_windows_tco_comparison.pdf 
 
Anonymous[3]; 2003; Financial Justification; Solution Matrix, Ltd.; retrieved from the 
Internet on 10/3/2003 from: http://www.solutionmatrix.com/fjgo.html 
 
Anonymous[4]; April 3, 2003; Gnu’s Not UNIX!; Free Software Foundation, Inc.; 
Boston, MA; retrieved from the Internet on 3/6/2003 from: http://www.fsf.org/ 
 
Anonymous[5]; Beyond the Price Tag; International Business Machines Corporation; 
retrieved from the Internet on 11/7/2003 from: 
http://www-1.ibm.com/mediumbusiness/sbcus/rc/featurearticle.jsp?id=4590 
 
Anonymous[6]; December 29, 2002; Categories of Free and Non-Free Software, Free 
Software Foundation, Inc; Boston, MA; retrieved from the Internet on 3/21/2003 from: 
http://www.fsf.org/philosophy/categories.html#TheGNUsystem 
 
Anonymous[7]; February 2000; How Open Source Software Development Works; 
LinuxCare, Inc.; San Francisco, CA; retrieved from the Internet on 3/21/2003 from: 
http://www.itpapers.com/ (logon required) 
 
Anonymous[8]; January 2001; Innovation Without Incompatibility; LinuxCare, Inc.; San 
Francisco, CA retrieved from the Internet on 3/21/2003 from: http://www.itpapers.com/
(logon required) 
 
Anonymous[9]; June 2002; Free/Libre and Open Source Software: Survey and Study; 
Berlecon Research GmbH; Berlin and the International Institute of Infonomics; retrieved
from the Internet from: http://www.infonomics.nl/FLOSS/report/ 
 
Anonymous[10]; June 4, 2003, last revision; Financial Metrics for the Business Case,
(Excel Spreadsheet); Solution Matrix Ltd; Boston, MA; retrieved from the Internet on
10/16/2003 from: 
http://www.solutionmatrix.com/downloads/FinancialMetrics/FinancialMetrics.zip 
 
Anonymous[11]; March 7, 2003; The Free Software Definition; Free Software 
Foundation, Inc; Boston, MA; retrieved from the Internet on 3/21/2003 from: 
http://www.fsf.org/philosophy/free-sw.html 
 



 
 

139 

 

Anonymous[12]; May, 1999; Cost-Benefit Analysis Guide For NIH IT Projects; National 
Institutes of Health, United States Department Of Health And Human Services; retrieved 
from the Internet on 10/3/2003 from: http://irm.cit.nih.gov/itmra/cbaguide.html 
 
Anonymous[13]; no date; Benefits of Using Open Source Software; GBdirect, Ltd, West 
Yorkshire, United Kingdom; retrieved from the Internet on 4/21/2003 from: 
http://ebusiness.gbdirect.co.uk/OpenSourceMigration/benefit.html 
 
Anonymous[14]; no date; History of the OSI; Open Source Initiative (OSI); Copyright 
2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/docs/history.php 
 
Anonymous[15]; no date; Jobs for Hackers: Yes, You Can Eat Open Source; Open 
Source Initiative (OSI); Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/advocacy/jobs.php 
 
Anonymous[16]; no date; Linux distributions; Linux Online; retrieved from the Internet 
on April 11, 2003 from:  http://www.linux.org/dist/index.html 
 
Anonymous[17]; no date; MySQL Licensing Policy; MySQL AB; Uppsala, Sweden; 
retrieved from the Internet on 4/20/2003 from: 
http://www.mysql.com/products/licensing.html 
 
Anonymous[18]; no date; NetCraft Web Server Survey; Netcraft Ltd; Bath, England; 
Current data located at: http://www.netcraft.com/survey/  
 
Anonymous[19]; no date; Open Source Case for Business; Open Source Initiative (OSI); 
Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/advocacy/case_for_business.php 
 
Anonymous[20]; no date; Open Source License Information; Open Source Initiative 
(OSI); Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/licenses/index.php 
 
Anonymous[21]; no date; PostgreSQL License webpage; PostgreSQL, Inc; retrieved 
from the Internet on 3/10/2003 from: http://www.postgresql.org/licence.html 
 
Anonymous[22]; no date; Products; Open Source Initiative (OSI); Copyright 2003;
retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/docs/products.php 
 
Anonymous[23]; no date; Shared Source: A Dangerous Virus; Open Source Initiative 
(OSI); Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/advocacy/shared_source.php 
 



 
 

140 

 

Anonymous[24]; no date; The Halloween Documents; Open Source Initiative (OSI); 
Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/halloween 
 
Anonymous[25]; no date; The Wisdom of Adam Smith; Adam Smith Institute; retrieved 
from the Internet on 9/2/2003 from: http://www.adamsmith.org/smith/quotes.htm 
 
Anonymous[26]; no date; Why "Free" Software is too Ambiguous; Open Source Initiative 
(OSI); Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/advocacy/free-notfree.php 
 
Anonymous[27]; October 2002; Open-Source Software In E-Government; Danish Board 
of Technology; retrieved from the Internet on 10/3/2003 from: 
http://www.tekno.dk/pdf/projekter/p03_opensource_paper_english.pdf 
 
Anonymous[28]; no date; The Open Source Case for Customers; Open Source Initiative 
(OSI); Copyright 2003; retrieved from the Internet on 4/10/2003 from: 
http://www.opensource.org/advocacy/case_for_customers.php 
 
Ante, Spencer E.; Greene, Jay; Hamm, Steve; Kerstetter, Jim; March 3, 2003; The Linux 
Uprising; BusinessWeek; pp 78-84; The McGraw-Hill Companies, Inc.; New York, NY 
 
Bessen, James; July 2002; Open Source Software: Free Provision of Complex Public 
Goods; Research on Innovation; retrieved from the Internet on 4/12/2003 from: 
http://researchoninnovation.org/opensrc.pdf 
 
Bezroukov, Nikolai; December 1999; A Second Look at the Cathedral and Bazaar; First 
Monday, volume 4, number 12; retrieved from the Internet on 4/20/2003 from:
http://firstmonday.org/issues/issue4_12/bezroukov/index.html 
 
Bonaccorsi, Andrea and Rossi, Cristina; February 2002; Why Open Source Software can 
Succeed; Laboratory of Economics and Management, Sant’Anna School of Advanced
Studies, Pisa, Italy; retrieved from the Internet on 4/10/2003 from: 
http://opensource.mit.edu/papers/rp-bonaccorsirossi.pdf 
 
Bozman, Jean; Gillen, Al, Kolodgy, Charles; Kusnetzky, Dan; Perry, Randy; and Shiang,
David; October 2002; Windows 2000 Versus Linux in Enterprise Computing; IDC; 
retrieved from the Internet:
http://www.microsoft.com/windows2000/migrate/unix/tco.asp 
 
Brooks, Jason; August 2003; Novell Bets on Linux; eWeek; p. 33; Ziff-Davis Media; 
online version available at: http://www.eweek.com/article2/0,3959,1225808,00.asp 
 



 
 

141 

 

Cirillo, Rich; July 15, 2002; Ballmer: Linux Changed Our Game; VARBusiness; CMP 
Media Inc.; retrieved from the Internet on 4/6/2003 from: 
http://vb.channelsupersearch.com/news/var/36355.asp 
 
Clark, John j., Hindlang, Thomas J. and Pritchard, Richard E.;1984; Capital Budgeting; 
Prentice-Hall, Inc.; Englewood Cliffs, New Jersey 
 
Cohen, Nancy; no date; Tei And Sympathy; Open: The Strategic Guide to Open Source; 
CCI Communications; Newton, MA; retrieved from the Internet on 3/24/2003 from:
http://www.open-mag.com/9843483279.htm 
 
Daffara, Carlo and Gonzalez-Barahona, Jesus M., editors; April 2000; Free Software / 
Open Source; Information Society Opportunities for Europe?; European Working Group 
on Libre Software; retrieved on April 28, 2003 from: httphttp://eu.conecta.it/paper.pdf  
 
Dalle, Jean-Michael and Jullian, Nicolas; January 2001; Open-Source vs. Proprietary 
Software; École Nationale Supérieure of Telecommunications, France; retrieved from the
Internet on 4/21/2003 from: http://opensource.mit.edu/papers/dalle2.pdf 
 
DiBona, Chris, Ockman, Sam and Stone, Mark; January 1999; OPENSOURCES: Voices 
from the Open Source Revolution; O’Reilly and Associates; Sebastopol, CA 
 
E-Soft, Inc.; April 2003; Web Server Survey; Current data located at: 
http://www.securityspace.com/s_survey/data/200303/index.html 
 
Farbey, Barbara; Finkelstein, Anthony; May 2001; Evaluation in Software Engineering: 
ROI, but More than ROI; University College London, United Kingdom; Presented at the
Third International Workshop on Economics-Driven Software Engineering Research; 
retrieved from the Internet on 4/20/2003 from: 
http://www.cs.virginia.edu/~sullivan/edser3/finkelstein.pdf 
 
Festa, Paul; August 29, 2001; Governments Push Open-Source Software; CNET 
Networks, Inc; retrieved on April 12, 2003 from:  http://news.com.com/2100-1001-
272299.html 
 
Finney, Robert G.; 1994; Every Manager’s Guide to Business Finance; American
Management Association; New York, New York 
 
Foster, Ed; January 1998; 1997 Best Technical Support Award; InfoWorld Media Group 
Inc.; retrieved from the Internet on 4/20/2003 from: http://www.infoworld.com/cgi-
bin/displayTC.pl?/97poy.supp.htm 
 



 
 

142 

 

Gillen, Al, and Kusnetsky, Dan; March 2001; Linux: A Journey into the Enterprise; IDC; 
retrieved from the Internet:
http://www.nebula.nl/downloads/Linux_in_the_Enterprise.pdf 
 
Greene, Jay; March 3, 2003; Pecked by Penguins; BusinessWeek; pp 84-86; The 
McGraw-Hill Companies, Inc.; New York, NY 
 
Gross, Grant; January 3, 2003; Linux TCO Edge: Lower labor costs; TechRepublic; 
CNET Networks, Inc; retrieved from the Internet on 3/24/2003 from: 
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2907876,00.html 
 
Hahn, Robert W., editor; 2002; Government Policy toward Open Source Software; AEI-
Brookings Joint Center for Regulatory Studies, Washington, D.C; retrieved from the
Internet on 9/1/2003 from:  http://aei-brookings.org/admin/pdffiles/phpJ6.pdf 
 
Hasan, Ragib; July 24, 2002, last revision; History of Linux; retrieved from the Internet 
on 4/1/2003 from:  http://ragib.hypermart.net/linux/ 
 
Hawkins, Richard E.; November 2002; The Economics of Free and Open Source 
Software; Pennsylvania State University; retrieved from the Internet on 4/20/2003 from:
http://www.personal.psu.edu/faculty/r/e/reh18/research/01.sce/Open_Source.conference.pdf 
 
Hecker, Frank; June 2000; Setting Up Shop:The Business of Open-Source Software 
retrieved from the Internet: http://www.hecker.org/writings/setting-up-shop.html 
 
Helfert, Erich A.; 1994; Techniques of Financial Analysis, 8th ed.; Irwin Professional 
Publishing; New York, New York. 
 
Herbst, Anthony F.; 1982; Capital Budgeting: Theory, Quantitative Methods and
Applications; Harper and Row Publishers; New York, New York 
 
Higson, C. J.; 1986; Business Finance; Butterworth and Company, Ltd.; London, United 
Kingdom 
 
Jones, A. Russell; August 13, 2003; Linux vs. Windows: Choice vs. Usability; DevX, 
Jupitermedia Corporation; retrieved from the Internet on 8/17/2003 from: 
http://www.devx.com/opensource/Article/16969 
 
Kenwood, Carolyn A.; July 2001; A Business Case Study of Open Source Software; The 
Mitre Corporation; Bedford MA.; retrieved from the Internet on 4/16/2003 from:
http://www.mitre.org/support/papers/tech_papers_01/kenwood_software/kenwood_software.pdf 
 



 
 

143 

 

Kim, Eugene Eric; April 2003; An Introduction to Open Source Communities; Blue Oxen 
Associates LLC; retrieved from the Internet on 5/20/2003 from: 
http://www.blueoxen.org/research/00007/ 
 
Krishnamurthy, Sandeep; January 2003; Open-Source Software; University of 
Washington; retrieved from the Internet on 3/20/2003 from: 
http://students.washington.edu/borg/case2.htm 
 
Kuwabara, Ko; March 2000; Linux: A Bazaar at the Edge of Chaos; First Monday, 
volume 5, number 3; retrieved from the Internet on 4/20/2003 from: 
http: http://firstmonday.org/issues/issue5_3/kuwabara/index.html 
 
Lakhani, Karim R. and von Hippel, Eric; June 2002; How Open Source Software Works: 
“free” user-to-user assistance; MIT Sloan School of Management; retrieved from the
Internet on 9/20/2003 from: 
http://opensource.mit.edu/papers/lakhanivonhippelusersupport.pdf 
 
Lancashire, David; December 2001; The Fading Altruism of Open Source Development; 
First Monday, volume 6, number 12; retrieved from the Internet on 4/20/2003 from:
http://firstmonday.org/issues/issue6_12/lancashire/index.html 
 
Larson, Kermit D. and Miller, Paul B. W.; 1993; Fundamental Accounting Principles; 
13th edition; Richard D. Irwin, Inc.; Homewood, IL. 
 
Lerner, Josh and Tirole, Jean; December 2000; The Simple Economics of Open Source; 
Harvard Business School; retrieved from the Internet on 4/21/2003 from: 
http://opensource.mit.edu/papers/Josh%20Lerner%20and%20Jean%20Triole%20-
%20The%20Simple%20Economics%20of%20Open%20Source.pdf 
 
Lumby, Stephen; 1988; Investment Appraisal & Financing Decisions, 3rd Ed.; Von 
Nostrand Reinhold Company, Ltd.; Berkshire, England 
 
Margulius, Dave; August 29, 2003; The Real Cost Of Switching To Linux; InfoWorld;
InfoWorld Media Group; retrieved from the Internet on 10/16/2003 from: 
http://www.infoworld.com/pdf/special_report/Linux_feature_2003.pdf 
 
Mayor, Tracy; May 1, 2000; Value Made Visible; CIO Magazine; CXO Media Inc; 
retrieved from the Internet on 10/19/2003 from: 
http://www.cio.com/archive/050100/method.html 
 
McCullagh, Declan and Zarate, Robert; June. 12, 2002; U.S. Gov't Still Penguin Shy; 
Wired News; Lycos, Inc; retrieved from the Internet on 3/10/2003 from: 
http://www.wired.com/news/linux/0,1411,53005,00.html) 
 



 
 

144 

 

Meals, Carole; 2002; Business Case Analysis; Mitretek Systems, Inc.; retrieved from the 
Internet on 10/02/2003 from: 
http://www.mitretek.org/pubs/Sigma_Pubs_spring02/chap4.pdf 
 
Miller, Robin; April 25, 2003; Why Do Programmers Write Open Source Software?; 
NewsForge, Open Source Development Network, Inc; retrieved from the Internet on
5/2/2003 from: http://newsforge.com/article.pl?sid=03/04/19/2128256 
 
Mock, Edward J. and Shuckett, Donald Hart; 1973; Decision Strategies in Financial
Management; American Management Association; New York, New York 
 
Morrow, Vincent; 1991; Handbook of Financial Analysis for Corporate Managers; 
Prentice-Hall, Inc.; Inglewood, New Jersey 
 
Norton, Michael J. and Story, Derrick; July 7, 2000; Mac OS Terms and Definitions; 
O'Reilly & Associates, Inc; retrieved from the Internet on 4/16/2003 from: 
http://www.oreillynet.com/pub/a/network/2000/07/13/magazine/carbonese.html 
 
Nuvolari, Alessandro; January 2001; Open Source Software Development: Some 
Historical Perspectives; Eindhoven University of Technology; retrieved from the Internet
on 4/21/2003 from: http://opensource.mit.edu/papers/nuvolari.pdf 
 
Panko, Raymond R.; Spring 1998; What We Know About Spreadsheet Errors; Journal of 
End User Computing, volume 10, number 2, pp. 15-21. A lengthier version in HTML 
format is available from:  http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm 
 
Paul Festa; August 29, 2001; Governments Push Open-Source Software; CNET 
Networks, Inc; retrieved from the Internet: http://news.com.com/2100-1001-272299.html
 
Peeling, Nic and Satchell, Julian; October 2001; Analysis of the Impact of Open Source 
Software; QinetiQ, ltd; retrieved from the Internet on 3/10/2003 from: 
http://www.govtalk.gov.uk/documents/QinetiQ_OSS_rep.pdf 
 
Prasad, Ganesh; July 26, 2001; Yes, you can do Business with Open Source, ZDNet India, 
CNET Networks; retrieved from the Internet on 4/20/2003 from: 
http://www.zdnetindia.com/techzone/linux/stories/32999.html 
 
Ragsdale, Cliff T.; 1998; Spreadsheet Modeling and Decision Analysis; South-Western 
College Publishing; Cincinnati, Ohio 
 
Raymond, Eric S.; January, 2001; The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary; O'Reilly & Associates; Sebastopol, CA 
 



 
 

145 

 

Raymond, Eric S.; June 1999; Shut Up and Show Them the Code; retrieved from the 
Internet from:  http://www.catb.org/%7Eesr/writings/shut-up-and-show-them.html 
 
Rudwick, Bernard H.; 1969; Systems Analysis for Effective Planning: Principles and 
Cases; John Wiley & Sons, Inc.; New York, New York 
 
Schmidt[1], Marty J.; 2003; The IT Business Case: Keys to Accuracy and Credibility; 
Solution Matrix, Ltd.; retrieved from the Internet on 10/3/2003 from: 
http://www.solutionmatrix.com/IT_Business_Case.pdf 
 
Schmidt[2], Marty J.; April 2003; Business Case Essentials: A Guide to Structure and
Content; Solution Matrix, Ltd.; retrieved from the Internet on 10/3/2003 from: 
http://www.solutionmatrix.com/Business_Case_Essentials.pdf 
 
Schmidt[3], Marty J.; 2003; What’s a Business Case: And Other Frequently Asked
Questions; Solution Matrix, Ltd.; retrieved from the Internet on 10/3/2003 from: 
http://www.solutionmatrix.com/Whats_a_Business_Case.pdf 
 
Schweik, Charles M. and Semenov, Andrei; January 2003; The Institutional Design of 
Open Source Programming: Implications for Addressing Complex Public Policy and
Management Problems; First Monday, volume 8, number 1; retrieved from the Internet: 
http://firstmonday.org/issues/issue8_1/schweik/index.html 
 
Scott, Brendan; July 15, 2002; Why Free Software's Long Run TCO Must be Lower; 
retrieved from the Internet on 11/7/2003 from: 
http://www.members.optushome.com.au/brendanscott/papers/freesoftwaretco150702.html 
 
Stallman[1], Richard; March 21, 2003, last revision; The GNU Project; retrieved from the 
Internet on 3/24/2003 from: http://www.fsf.org/gnu/thegnuproject.html 
 
Stallman[2], Richard; no date; Selling Free Software; Free Software Foundation, Inc.; 
Boston, MA; retrieved from the Internet on 3/21/2003 from: 
http://www.fsf.org/philosophy/selling.html 
 
Stevens, Jr., G. T.; 1983; The Economic Analysis of Capital Investments for Managers &
Engineers; Reston Publishing Company, Inc; Reston, Virginia 
 
Stevenson, Cooper; February 2003; Blueprint for Linux in the Enterprise; MetaSource 
Technologies; retrieved from the Internet on 3/20/2003 from: 
http://www.toumaforester.com/download/linux_eprise.pdf 
 
Stoltz, Mitch; 1999; The Case for Government Promotion of Open Source Software; The 
Tides Center / NetAction; retrieved from the Internet on 4/20/2003 from: 
http://www.netaction.org/opensrc/oss-report.html 
 



 
 

146 

 

Taft, Darryl K. and Petersen, Scot; March 24, 2003; Open-Source Movement Gains 
Ground on Microsoft; eWeek; pp 1,14; Ziff-Davis Media 
 
Turnbull, Stephen J.; January 24, 2003, last revision; XEmacs vs. GNU Emacs; retrieved 
from the Internet on 4/10/2003 from: 
http://www.xemacs.org/About/XEmacsVsGNUemacs.html 
 
Varghese, Sam; March 2003; Swedish Study says TCO for Open Source Software is
Lower; The Age Company Ltd; retrieved from the Internet on 5/2/2003 from: 
http://www.theage.com.au/articles/2003/03/11/1047144950542.html 
 
Viega, John; September 1999; Open source software: Will it make me secure?; Reliable 
Software Technologies; retrieved from the Internet from: 
http://www-106.ibm.com/developerworks/security/library/s-oss-security.html#h0 
 
Walkenbach, John; 2004; Excel 2003 Formulas; Wiley Publishing, Inc.; Indianapolis, In.
 
West, Joel; December, 2002; How Open is Open enough; San Jose State University; 
retrieved from the Internet on 4/21/2003 from: 
http://opensource.mit.edu/papers/rp-west.pdf 
 
Wheeler, David A.; February 26, 2003, last revision; Why Open Source Software / Free 
Software (OSS/FS)? Look at the Numbers!; dwheeler@dwheeler.com; retrieved from the 
Internet on 3/10/2003 from:  http://www.dwheeler.com/oss_fs_why.html 
 
Whitlock, Natalie; March 1, 2001; The Security Implications of Open Source Software; 
Casaflora Communications; retrieved from the Internet from: 
http://www-106.ibm.com/developerworks/linux/library/l-oss.html 
 
Wilcox, Joe; May 10, 2002; Microsoft Program Meets Some Resistance; CNet news.com; 
retrieved from the Internet on 4/12/2003 from: 
http://news.com.com/2100-1001-908773.html 
 
Wysong, Thomas G.; October 2000; Introduction to Open Source and Free Software
(version 1.1); retrieved from the Internet on 4/12/2003 from: 
http://technodemocracy.org/people/tgw/docs/ossfs.html  
(as of 8/30/2003, this link no longer exists) 
 
 


